中小学教育资源及组卷应用平台
冀教版七年级数学下册第十一章 因式分解必考点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域 ( http: / / www.21cnjy.com )内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21·世纪*教育网
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列各式从左到右的变形中,是因式分解的为( )
A.x(a﹣b)=ax﹣bx B.x2﹣3x+1=x(x﹣3)+1
C.x2﹣4=(x+2)(x﹣2) D.m+1=x(1+)
2、下列式子从左到右的变形中,属于因式分解的是( )
A. B.
C. D.
3、已知a+b=2,a-b=3,则等于( )
A.5 B.6 C.1 D.
4、下列等式中,从左到右的变形是因式分解的是( )
A. B.
C. D.
5、下列分解因式正确的是( )
A. B.
C. D.
6、若、、为一个三角形的三边长,则式子的值( )
A.一定为正数 B.一定为负数 C.可能是正数,也可能是负数 D.可能为0
7、下列因式分解正确的是( )
A.x2-4x+4=x(x-4)+4 B.9-6(m-n)+(n-m)2=(3-m+n)2
C.4x2+2x+1=(2x+1)2 D.x4-y4=(x2+y2)(x2-y2)
8、如图,长与宽分别为a、b的长方形,它的周长为14,面积为10,则a3b+2a2b2+ab3的值为( )
( http: / / www.21cnjy.com / )
A.2560 B.490 C.70 D.49
9、已知c<a<b<0,若M=|a(a﹣c)|,N=|b(a﹣c)|,则M与N的大小关系是( )
A.M<N B.M=N C.M>N D.不能确定
10、下列从左边到右边的变形中,是因式分解的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、分解因式________.
2、因式分解:________.
3、分解因式:__________.
4、当x=___时,x2﹣2x+1取得最小值.
5、分解因式:=_______.
三、解答题(5小题,每小题10分,共计50分)
1、因式分解:
(1)4x4+4x3+x2;
(2)(2m+3)2﹣m2.
2、分解因式:
3、(1)运用乘法公式计算:;
(2)分解因式:.
4、因式分解
(1)5x2+6y﹣15x﹣2xy;
(2)(1+ab)2﹣(a+b)2.
5、分解因式:.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
解:A、是整式的乘法,故A错误,不符合题意;
B、没把一个多项式转化成几个整式积的形式,故B错误,不符合题意;
C、把一个多项式转化成几个整式积的形式,故C正确,符合题意;
D、等号左右两边式子不相等,故D错误,不符合题意;
故选C
【点睛】
本题考查了因式分解的意义,明确因式分解的结果应是整式的积的形式是解题的关键.
2、B
【解析】
【分析】
把一个多项式化为几个整式的积的形式叫把这个多项式分解因式,根据定义逐一判断即可.
【详解】
解:是整式的乘法,故A不符合题意;
是因式分解,故B符合题意;
右边不是整式的积的形式,不是因式分解,故C不符合题意;
右边不是整式的积的形式,不是因式分解,故D不符合题意;
故选B
【点睛】
本题考查的是因式分解的定义,掌握“根据因式分解的定义判断变形是否是因式分解”是解本题的关键.
3、B
【解析】
【分析】
根据平方差公式因式分解即可求解
【详解】
∵a+b=2,a-b=3,
∴
故选B
【点睛】
本题考查了根据平方差公式因式分解,掌握平方差公式是解题的关键.
4、C
【解析】
【分析】
根据因式分解定义解答.
【详解】
解:A. 是整式乘法,故该项不符合题意;
B. 是整式乘法,故该项不符合题意;
C. 是因式分解,故该项符合题意;
D. 不是整式乘法也不是因式分解,故该项不符合题意;
故选:C.
【点睛】
此题考查了因式分解的定义:将一个多项式分解为几个整式的积的形式,叫将多项式分解因式,熟记定义是解题的关键.21世纪教育网版权所有
5、C
【解析】
【分析】
根据因式分解的方法逐个判断即可.
【详解】
解:A. ,原选项错误,不符合题意;
B. ,原选项错误,不符合题意;
C. ,正确,符合题意;
D. ,原选项错误,不符合题意;
故选:C.
【点睛】
本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解.
6、B
【解析】
【分析】
先分解因式,再根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.
【详解】
解:原式=(a-c+b)(a-c-b),
∵两边之和大于第三边,两边之差小于第三边,
∴a-c+b>0,a-c-b<0,
∵两数相乘,异号得负,
∴代数式的值小于0.
故选:B.
【点睛】
本题利用了因式分解,以及三角形中三边的关系:在三角形中,任意两边之和>第三边,任意两边之差<第三边.21·cn·jy·com
7、B
【解析】
【分析】
利用公式法进行因式分解判断即可.
【详解】
解:A、,故A错误,
B、9-6(m-n)+(n-m)2=(3-m+n)2,故B正确,
C、4x2+2x+1,无法因式分解,故C错误,
D、,因式分解不彻底,故D错误,
故选:B.
【点睛】
本题主要是考查了利用公式法进行因式分解,一定要熟练掌握完全平方公式和平方差公式的形式,另外因式分解一定要彻底.www.21-cn-jy.com
8、B
【解析】
【分析】
利用面积公式得到ab=10,由周长公式得到a+b=7,所以将原式因式分解得出ab(a+b)2.将其代入求值即可.2·1·c·n·j·y
【详解】
解:∵长与宽分别为a、b的长方形,它的周长为14,面积为10,
∴ab=10,a+b=7,
∴a3b+2a2b2+ab3=ab(a+b)2=10×72=490.
故选:B.
【点睛】
本题主要考查了因式分解和代数式求值,准确计算是解题的关键.
9、C
【解析】
【分析】
方法一:根据整式的乘法与绝对值化简,得到M-N=(a﹣c)(b﹣a)>0,故可求解;
方法二:根据题意可设c=-3,a=-2,b=-1,再求出M,N,故可比较求解.
【详解】
方法一:∵c<a<b<0,
∴a-c>0,
∴M=|a(a﹣c)|=- a(a﹣c)
N=|b(a﹣c)|=- b(a﹣c)
∴M-N=- a(a﹣c)-[- b(a﹣c)]= - a(a﹣c)+ b(a﹣c)=(a﹣c)(b﹣a)
∵b-a>0,
∴(a﹣c)(b﹣a)>0
∴M>N
方法二: ∵c<a<b<0,
∴可设c=-3,a=-2,b=-1,
∴M=|-2×(-2+3)|=2,N=|-1×(-2+3)|=1
∴M>N
故选C.
【点睛】
此题主要考查有理数的大小比较与因式分解得应用,解题的关键求出M-N=(a﹣c)(b﹣a)>0,再进行判断.【来源:21·世纪·教育·网】
10、A
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A.是因式分解,故本选项符合题意;
B.等式的左边不是多项式,所以不是因式分解,故本选项不合题意;
C.等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;
D.等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;
故选:A.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.www-2-1-cnjy-com
二、填空题
1、
【解析】
【分析】
原式提取m后,利用完全平方公式分解即可.
【详解】
解:
故答案为:
【点睛】
本题考查了因式分解,掌握提公因式法因式分解和公式法因式分解是解题的关键.
2、m(m+1)(m﹣1).
【解析】
【分析】
原式提取m,再利用平方差公式分解即可.
【详解】
解:原式=m(m2﹣12)
=m(m+1)(m﹣1).
故答案为:m(m+1)(m﹣1).
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
3、
【解析】
【分析】
没有公因式,总共三项,其中有两项能化为两个数的平方和,第三项正好为这两个数的积的2倍,直接运用完全平方公式进行因式分解.2-1-c-n-j-y
【详解】
解:,
故答案为:.
【点睛】
本题主要考查利用完全平方公式分解因式,熟记公式结构是解题的关键.
4、1
【解析】
【分析】
先根据完全平方公式配方,再根据偶次方的非负性即可求解.
【详解】
解:∵,
∴当x=1时,x2﹣2x+1取得最小值.
故答案为:1.
【点睛】
本题考查了完全平方公式,解题的关键是掌握完全平方公式.
5、
【解析】
【分析】
两次利用平方差公式即可解决.
【详解】
故答案为:
【点睛】
本题考查了用平方差公式分解因式,注意因式分解要分解到再也不能分解为止.
三、解答题
1、 (1)
(2)
【解析】
【分析】
(1)先提取公因式,然后再运用完全平方公式法因式分解即可;
(2)运用平方差公式因式分解即可.
(1)
解:4x4+4x3+x2
= x2(4x2+4x+1)
=.
(2)
解:(2m+3)2﹣m2
=(2m+3+m)(2m+3-m)
=(3m+3)(m+3)
=.
【点睛】
本题主要考查了因式分解,掌握提取公因式法和公式法因式分解是解答本题的关键.
2、(a-3)2(a+3)2
【解析】
【分析】
直接利用完全平方公式以及平方差公式分解因式得出答案.
【详解】
解:a4-18a2+81
=(a2-9)2
=(a-3)2(a+3)2.
【点睛】
此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.
3、(1);(2)
【解析】
【分析】
(1)把(3y-2)看作一个整体,然后利用平方差公式及完全平方公式进行求解即可;
(2)先部分提公因式,然后再利用完全平方公式进行因式分解即可.
【详解】
解:(1)
=
=;
(2)
=
=.
【点睛】
本题主要考查整式的混合运算及因式分解,熟练掌握乘法公式是解题的关键.
4、 (1)(x﹣3)(5x﹣2y)
(2)(1﹣a)(1﹣b)(1+a)(1+b)
【解析】
【分析】
(1)根据题意将原式分为两组:(5x2﹣15x)、﹣(2xy﹣6y),然后利用提取公因式法进行因式分解;21教育网
(2)根据题意利用平方差公式进行因式分解即可得出答案.
(1)
解:原式=(5x2﹣15x)﹣(2xy﹣6y)
=5x(x﹣3)﹣2y(x﹣3)
=(x﹣3)(5x﹣2y);
(2)
解:原式=(1+ab﹣a﹣b)(1+ab+a+b)
=[(1﹣a)﹣b(1﹣a)][(1+a)+b(1+a)]
=(1﹣a)(1﹣b)(1+a)(1+b).
【点睛】
本题考查平方差公式,分组分 ( http: / / www.21cnjy.com )解法分解因式,要先把式子整理,再分解因式.对于一个四项式用分组分解法进行因式分解,难点是采用两两分组还是三一分组.21cnjy.com
5、.
【解析】
【分析】
先将因式进行分组为,再综合利用提公因式法和平方差公式分解因式即可得.
【详解】
解:原式
.
【点睛】
本题考查了因式分解,熟练掌握因式分解的方法是解题关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)