中小学教育资源及组卷应用平台
冀教版七年级数学下册第九章 三角形重点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指 ( http: / / www.21cnjy.com )定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21世纪教育网版权所有
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知三角形的两边长分别为和,则下列长度的四条线段中能作为第三边的是( )
A. B. C. D.
2、如图,在中,,,将沿直线翻折,点落在点的位置,则的度数是( )
( http: / / www.21cnjy.com / )
A.30° B.45° C.60° D.75°
3、下列图形中,不具有稳定性的是( )
A.等腰三角形 B.平行四边形 C.锐角三角形 D.等边三角形
4、一把直尺与一块三角板如图放置,若,则( )
( http: / / www.21cnjy.com / )
A.120° B.130° C.140° D.150°
5、小明把一副含有45°,30°角的直角三角 ( http: / / www.21cnjy.com )板如图摆放其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠a+∠β等于( )2·1·c·n·j·y
( http: / / www.21cnjy.com / )
A.180° B.210° C.360° D.270°
6、若三角形的两边a、b的长分别为3和4,则其第三边c的取值范围是( )
A.3<c<4 B.2≤c≤6 C.1<c<7 D.1≤c≤7
7、下列长度的三条线段能组成三角形的是( )
A.3,4,7 B.3,4,8 C.3,4,5 D.3,3,7
8、利用直角三角板,作的高,下列作法正确的是( )
A. ( http: / / www.21cnjy.com / ) B. ( http: / / www.21cnjy.com / )
C. ( http: / / www.21cnjy.com / ) D. ( http: / / www.21cnjy.com / )
9、如图,在中,若点使得,则是的( )
( http: / / www.21cnjy.com / )
A.高 B.中线 C.角平分线 D.中垂线
10、如图,在ABC中,点D、E分别是AC,AB的中点,且,则( )
( http: / / www.21cnjy.com / )
A.12 B.6 C.3 D.2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,把纸片沿DE折叠,使点A落在图中的处,若,,则的大小为______.
( http: / / www.21cnjy.com / )
2、△ABC中,已知∠C=90°,∠B=55°,则∠A=_____.
3、如图,在面积为48的等腰中,,,P是BC边上的动点,点P关于直线AB、AC的对称点外别为M、N,则线段MN的最大值为______.21cnjy.com
( http: / / www.21cnjy.com / )
4、图①是将木条用钉子钉成的四边形和三角形木架,拉动木架,观察图②中的变动情况,说一说,其中所蕴含的数学原理是_____.【来源:21·世纪·教育·网】
( http: / / www.21cnjy.com / )
5、如图:中,,,于D,CE平分,于F,则______°.
( http: / / www.21cnjy.com / )
三、解答题(5小题,每小题10分,共计50分)
1、如图,在△ABC中, ( http: / / www.21cnjy.com )AD平分∠BAC,P为线段AD上一点,PE⊥AD交BC的延长线于点E,若∠B=35°,∠ACB=75°,求∠E的度数.【出处:21教育名师】
( http: / / www.21cnjy.com / )
2、已知:如图,在△ABC中,AB=3,AC=5.
(1)直接写出BC的取值范围是 .
(2)若点D是BC边上的一点,∠BAC=85°,∠ADC=140°,∠BAD=∠B,求∠C.
( http: / / www.21cnjy.com / )
3、如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=45°,∠BDC=60°,求∠BED的度数.
( http: / / www.21cnjy.com / )
4、如图,△ABC中,∠BAC=90 ( http: / / www.21cnjy.com )°,点D是BC上的一点,将△ABC沿AD翻折后,点B恰好落在线段CD上的B'处,且AB'平分∠CAD.求∠BAB'的度数.21教育名师原创作品
( http: / / www.21cnjy.com / )
5、完成下面推理填空:如图,已知:于D,于G,.求证:AD平分.
解:∵于D,(已知),
∴(____①_____),
∴(同位角相等,两直线平行),
∴_____②___(两直线平行,同位角相等)
∠1=∠2(____③_____),
又∵(已知),
∴∠2=∠3(_____④______),
∴AD平分(角平分线的定义).
( http: / / www.21cnjy.com / )
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据三角形的三边关系可得,再解不等式可得答案.
【详解】
解:设三角形的第三边为,由题意可得:
,
即,
故选:C.
【点睛】
本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.www.21-cn-jy.com
2、C
【解析】
【分析】
设交于点,是射线上的一点,设,根据三角形的外角的性质可得,进而根据平角的定义即可求得,即可求得.
【详解】
如图,设交于点,是射线上的一点,
( http: / / www.21cnjy.com / )
折叠,
设
即
故选C
【点睛】
本题考查了折叠的性质,三角形的外角的性质,掌握三角形外角的性质是解题的关键.
3、B
【解析】
【分析】
根据三角形具有稳定性,四边形不具有稳定性即可作出选择.
【详解】
解:平行四边形属于四边形,不具有稳定性,而三角形具有稳定性,故A符合题意;
故选:B.
【点睛】
本题考查了多边形和三角形的性质,解题的关键是记住三角形具有稳定性,四边形不具有稳定性.
4、B
【解析】
【分析】
由BC∥ED,得到∠2=∠CBD,由三角形外角的性质得到∠CBD=∠1+∠A=130°,由此即可得到答案.
【详解】
解:如图所示,由题意得:∠A=90°,BC∥EF,
∴∠2=∠CBD,
又∵∠CBD=∠1+∠A=130°,
∴∠2=130°,
故选B.
( http: / / www.21cnjy.com / )
【点睛】
本题主要考查了三角形外角的性质,平行线的性质,熟知相关知识是解题的关键.
5、B
【解析】
【分析】
已知,得到,根据外角性质,得到,,再将两式相加,等量代换,即可得解;
【详解】
解:如图所示,
( http: / / www.21cnjy.com / )
∵,
∴,
∵,,
∴,
∵,,
∴,
∵,,
∴;
故选D.
【点睛】
本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键.
6、C
【解析】
【分析】
根据三角形的两边之和大于第三边,两边之差小于第三边,即可求解.
【详解】
解:∵三角形的两边a、b的长分别为3和4,
∴其第三边c的取值范围是 ,
即 .
故选:C
【点睛】
本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.www-2-1-cnjy-com
7、C
【解析】
【分析】
根据组成三角形的三边关系依次判断即可.
【详解】
A、 3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误.
B、 3,4,8中3+4<8,故不能组成三角形,与题意不符,选项错误.
C、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确.21·世纪*教育网
D、 3,3,7中3+3<7,故不能组成三角形,与题意不符,选项错误.
故选:C.
【点睛】
本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.
8、D
【解析】
【分析】
由题意直接根据高线的定义进行分析判断即可得出结论.
【详解】
解:A、B、C均不是高线.
故选:D.
【点睛】
本题考查的是作图-基本作图,熟练掌握三角形高线的定义即过一个顶点作垂直于它对边所在直线的线段,叫三角形的高线是解答此题的关键.2-1-c-n-j-y
9、B
【解析】
【分析】
根据三角形的中线定义即可作答.
【详解】
解:∵BD=DC,
∴AD是△ABC的中线,
故选:B.
【点睛】
本题考查了三角形的中线概念,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
10、C
【解析】
【分析】
由于三角形的中线将三角形分成面积相等的两部分,则S△ABD=S△ABC=6,然后利用S△BDE=S△ABD求解.【来源:21cnj*y.co*m】
【详解】
解:∵点D为AC的中点,
∴S△ABD=S△ABC=×12=6,
∵点E为AB的中点,
∴S△BDE=S△ABD=×6=3.
故选:C.
【点睛】
本题考查了三角形中线的性质,熟练掌握三角形中线的性质是解答本题的关键. 三角形的中线把三角形分成面积相同的两部分.【版权所有:21教育】
二、填空题
1、##32度
【解析】
【分析】
利用折叠性质得,,再根据三角形外角性质得,利用邻补角得到,则,然后利用进行计算即可.
【详解】
解:∵,
∴,
∵纸片沿DE折叠,使点A落在图中的A'处,
∴,,
∵,
∴,
∴,
∴.
故答案为:.
【点睛】
本题考查了折叠的性质,三角形外角的性质,三角形内角和定理等,理解题意,熟练掌握综合运用各个知识点是解题关键.21·cn·jy·com
2、35°
【解析】
【分析】
根据三角形的内角和定理列式计算即可得解.
【详解】
∵∠C=90°,∠B=55°,
∴∠A=180°-∠B-∠C=180°-55°-90°=35°.
故答案为:35°.
【点睛】
本题考查了三角形的内角和定理,是基础题,熟记定理并准确计算是解题的关键.
3、19.2
【解析】
【分析】
点P关于直线AB、AC的对称点分别为M、N,根据三角形三边关系可得,当点P与点B或点C重合时,P、M、N三点共线,MN最长,由轴对称可得,,再由三角形等面积法即可确定MN长度.21*cnjy*com
【详解】
解:如图所示:点P关于直线AB、AC的对称点分别为M、N,
( http: / / www.21cnjy.com / )
由图可得:,
当点P与点B或点C重合时,如图所示,MN交AC于点F,此时P、M、N三点共线, MN最长,
( http: / / www.21cnjy.com / )
∴,,
∵等腰面积为48,,
∴,
,
∴,
故答案为:.
【点睛】
题目主要考查对称点的性质及三角形三边关系,三角形等面积法等,理解题意,根据图形得出三点共线时线段最长是解题关键.
4、三角形具有稳定性,四边形具有不稳定性
【解析】
【分析】
根据三角形的稳定性和四边形的不稳定性解答.
【详解】
由图示知,四边形变形了,而三角形没有变形,其中所蕴含的数学原理是三角形具有稳定性,四边形具有不稳定性.
故答案是:三角形具有稳定性,四边形具有不稳定性.
【点睛】
本题考查了三角形的稳定性和四边形具有不稳定性,关键抓住图中图形是否变形,从而判断是否具有稳定性.
5、80
三、解答题
1、
【解析】
【分析】
根据三角形内角和的性质求得的度数,再根据角平分线求得的度数,利用三角形外角性质求得的度数,从而求得的度数.
【详解】
解:∵,,
∴,
∵AD平分∠BAC,
∴,
∴,
∵PE⊥AD,
∴,
∴.
【点睛】
此题考查了三角形内角和的性质,三角形外角的性质以及角平分线的性质,解题的关键是灵活利用相关性质进行求解.
2、(1)2<BC<8;(2)25°
【解析】
【分析】
(1)根据三角形三边关系解答即可;
(2)根据三角形外角性质和三角形内角和解答即可.
【详解】
解:(1)∵AC-AB<BC<AC+AB,AB=3,AC=5.
∴2<BC<8,
故答案为:2<BC<8
(2)∵∠ADC是△ABD的外角
∴∠ADC=∠B+∠BAD=140
∵∠B=∠BAD
∴∠B=
∵∠B+∠BAC+∠C=180
∴∠C=180﹣∠B﹣∠BAC
即∠C=180﹣70﹣85=25
【点睛】
本题考查了三角形第三边的取值范围,三角形内角和定理和三角形外角的性质,能根据三角形的外角的性质求出∠B的度数是解此题的关键.
3、150°
【解析】
【分析】
求∠BED的度数,应先求出∠ABC的度数, ( http: / / www.21cnjy.com )根据三角形的外角的性质可得,∠ABD=∠BDC﹣∠A=60°﹣45°=15°.再根据角平分线的定义可得,∠ABC=2∠ABD=2×15°=30°,根据两直线平行,同旁内角互补得∠BED的度数.21*cnjy*com
【详解】
解:∵∠BDC是△ABD的外角,
∴∠ABD=∠BDC﹣∠A=60°﹣45°=15°.
∵BD是△ABC的角平分线,
∴∠DBC=∠ABD=15°,
∴∠ABC=30°,
∵DE∥BC,
∴∠BED=180°﹣∠ABC=180°﹣30°=150°.
【点睛】
本题考查三角形外角的性质及角平分线的定义和平行线的性质,解答的关键是沟通外角和内角的关系.
4、60°
【解析】
【分析】
由折叠和角平分线可求∠BAD=30°,即可求出∠BAB'的度数.
【详解】
解:由折叠可知,∠BAD=∠B'AD,
∵AB'平分∠CAD.
∴∠B'AC=∠B'AD,
∴∠BAD=∠B'AC=∠B'AD,
∵∠BAC=90°,
∴∠BAD=∠B'AC=∠B'AD=30°,
∴∠BAB'=60°.
【点睛】
本题考查了折叠和角平分线,解题关键是掌握折叠角相等和角平分线的性质.
5、垂直的定义;∠E=∠3;两直线平行,内错角相等;等量代换
【解析】
【分析】
根据平行线的判定与性质进行解答即可.
【详解】
解:∵AD⊥BC于D,EG⊥BC(已知),
∴∠ADC=∠EGC=90°(垂直的定义),
∴EG∥AD(同位角相等,两直线平行),
∴∠E=∠3(两直线平行,同位角相等)
∠1=∠2(两直线平行,内错角相等),
又∵∠E=∠1(已知),
∴∠2=∠3(等量代换),
∴AD平分∠BAC(角平分线的定义).
故答案为:垂直的定义;∠E=∠3;两直线平行,内错角相等;等量代换.
【点睛】
本题考查的是平行线的判定与性质,用到的知识点为:同位角相等,两直线平行;两直线平行,内错角相等,同位角相等.21教育网
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)