(共27张PPT)
11.1.1三角形的边
人教版八年级上册
教学目标
1.认识三角形并会用几何语言表示三角形,了解三角
形分类.
2.掌握三角形的三边关系.(难点)
3.运用三角形三边关系解决有关的问题.(重点)
新知导入
埃及金字塔
新知讲解
氨气分子结构示意图
飞机机翼
问题:
(1)从古埃及的金字塔到现代的飞机,从宏伟的建筑物到微 小的分子结构,都有什么样的形象?
(2)在我们的生活中有没有这样的形象呢?试举例.
新知讲解
三角形的概念
一
问题1:观察下面三角形的形成过程,说一说什么叫三角形
定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫作三角形.
问题2:三角形中有几条线段 有几个角
A
B
C
边:线段AB,BC,CA是三角形的边.
顶点:点A,B,C是三角形的顶点,
角:∠A,∠B,∠C叫作三角形的内角,简称三角
形的角.
有三条线段,三个角
新知讲解
记法:三角形ABC用符号表示________.
边的表示:三角形ABC的边AB、AC和BC可用小写字母分别表示为________.
△ABC
c,a,b
边c
边b
边a
顶点C
角
角
角
顶点A
顶点B
读作“三角形ABC”,除此△ABC还可记作△BCA,
△ CAB, △ ACB等.
三角形的边
新知讲解
三角形的角
A
B
C
三角形的内角: A、 B、 C
还可以表示为:
还可以表示为:
你能说出其他内角还可以怎么表示??
新知讲解
B
C
A
在△ABC中,
AB边所对的角是:
∠A所对的边是:
∠C
B C
再说几个对边与对角的关系试试.
三角形的对边与对角:
新知讲解
辨一辨:下列图形符合三角形的定义吗?
不符合
不符合
不符合
①位置关系:不在同一直线上;
②联接方式:首尾顺次相接.
三角形应满足以下两个条件:
要点提醒
新知讲解
5个,它们分别是△ABE,△ABC, △BEC,△BCD,△ECD.
找一找:(1)图中有几个三角形?用符号表示出这些三角形?
A
B
C
D
E
(2)以AB为边的三角形有哪些?
△ABC、△ABE.
(3)以E为顶点的三角形有哪些?
△ ABE 、△BCE、 △CDE.
新知讲解
(4)以∠D为角的三角形有哪些?
△ BCD、 △DEC.
(5)说出△BCD的三个角和三个顶点所对的边.
△BCD的三个角是∠BCD、∠BDC、∠CBD.顶点B所对应的边为DC,顶点C所对应的边为BD,顶点D所对应的边为BC.
A
B
C
D
E
新知讲解
三角形的分类
二
问题1:观察下列三角形,说一说,按照三角形内角的大小,三角形可以分为哪几类?
锐角三角形、 直角三角形、 钝角三角形.
新知讲解
腰
不等边三角形
等腰三角形
等边三角形
底边
顶角
底角
问题2:你能找出下列三角形各自的特点吗?
三边均不相等
有两条边相等
三条边均相等
新知讲解
三条边各不相等的三角形叫做不等边三角形 ;
有两条边相等的三角形叫做等腰三角形;
三条边都相等的三角形叫做等边三角形.
思考:等边三角形和等腰三角形之间有什么关系?
总结归纳
新知讲解
三角形按边分类
不等边三角形
等腰三角形
我们可以把三角形按照三边情况进行分类
腰和底不等的等腰三角形
等边三角形(三边都相等
的三角形)
强化练习
判断:
(2)等边三角形是特殊的等腰三角形.( )
(1)一个钝角三角形一定不是等腰三角形.( )
√
×
(3)等腰三角形的腰和底一定不相等.( )
×
(4)等边三角形是锐角三角形.( )
(5)直角三角形一定不是等腰三角形.( )
×
√
新知讲解
在A点的小狗,为了尽快吃到B点的香肠,它选择A B 路线,而不选择A C B路线,难道小狗也懂数学?
C
B
A
三角形的三边关系
三
AC+CB>AB(两点之间线段最短)
新知讲解
A
B
C
路线1:从A到C再到B的路线走;
路线2:沿线段AB走.
请问:路线1、路线2哪条路程较短,你能说出根据吗?
解:路线2较短;两点之间线段最短.
由此可以得到:
新知讲解
归纳总结
三角形两边的和大于第三边.
三角形两边的差小于第三边.
议一议
1.在同一个三角形中,任意两边之和与第三边有什么
大小关系
2.在同一个三角形中,任意两边之差与第三边有什么
大小关系
3.三角形三边有怎样的不等关系
通过动手实验同学们可以得到哪些结论 理由是什么?
典例讲解
例1、判断下列长度的三条线段能否拼成三角形?为什么?
(1)3cm、8cm、4cm; (2)5cm、6cm、11cm;
(3)5cm、6cm、10cm.
例2、 一个三角形的三边长分别为4,7,x,那么x的取值范围是( )
A.3<x<11 B.4<x<7
C.-3<x<11 D.x>3
解析:∵三角形的三边长分别为4,7,x,∴7-4<x<7+4,即3<x<11.
典例讲解
例3 用一条长为18cm的细绳围成一个等腰三角形.
(1)如果腰长是底边长的2倍,那么各边的长是多少?
(2)能围成有一边的长是4cm的等腰三角形吗?为什么 ?
解:(1)设底边长为xcm,则腰长为2xcm,
x+2x+2x=18.
解得 x=3.6.
所以三边长分别为3.6cm、7.2cm、7.2cm.
典例讲解
(2)因为长为4cm的边可能是腰,也可能是底边,
所以需要分情况讨论.
①若底边长为4cm,设腰长为xcm,则有
4+2x=18.
解得 x=7.
②若腰长为4cm,设底边长为xcm,则有
2×4+x=18. 解得 x=10.
因为4+4<10,不符合三角形两边的和大于第三边,
所以不能围成腰长是4cm的等腰三角形.
由以上讨论可知,可以围成底边长是4cm的等腰三角形.
课堂小结
三角形
定义及其基本要素
顶点、角、边
分类
按角分类
按边分类分类
不重不漏
三边关系
原理
两点之间线段最短
内容
两边之和大于第三边
两边之差小于第三边
|a-b|b,x为第三边)
应用
当堂检测
1.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是 ( )
A.3cm,4cm,8cm B.8cm,7cm,15cm
C.5cm,5cm,11cm D.13cm,12cm,20cm
2.若一个三角形的两边长分别为3和7,则第三边长可能是( )
A.6 B.3 C.2 D.11
3.三角形的三边长分别为5,1+2x,8,则x的取值范围是________.
4.等腰三角形的腰长是6,则底边长3,周长为__________.
D
A
115
当堂检测
5.若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.
解:根据三角形的三边关系,两边之和
大于第三边,得
a-b-c<0,b-c-a<0,c+a-b>0.
∴|a-b-c|+|b-c-a|+|c+a-b|
=b+c-a+c+a-b+c+a-b
=3c+a-b.
谢谢
21世纪教育网(www.21cnjy.com)
中小学教育资源网站
兼职招聘:
https://www.21cnjy.com/recruitment/home/admin