【强化训练】冀教版七年级数学下册第九章-三角形必考点解析试题(精选)(含解析)

文档属性

名称 【强化训练】冀教版七年级数学下册第九章-三角形必考点解析试题(精选)(含解析)
格式 doc
文件大小 1.6MB
资源类型 试卷
版本资源 冀教版
科目 数学
更新时间 2022-12-01 15:51:07

图片预览

文档简介

中小学教育资源及组卷应用平台
冀教版七年级数学下册第九章 三角形必考点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定 ( http: / / www.21cnjy.com )区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21*cnjy*com
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、以下列各组线段为边,能组成三角形的是( )
A.3cm,4cm,5cm B.3cm,3cm,6cm C.5cm,10cm,4cm D.1cm,2cm,3cm
2、如图,在中,D是延长线上一点,,,则的度数为( )
( http: / / www.21cnjy.com / )
A. B. C. D.
3、下列图形中,不具有稳定性的是( )
A.等腰三角形 B.平行四边形 C.锐角三角形 D.等边三角形
4、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是(  )
A.3cm B.4cm C.7cm D.10cm
5、两个直角三角板如图摆放,其中∠BAC= ( http: / / www.21cnjy.com )∠EDF=90°,∠F=45°,∠B=60°,AC与DE交于点M.若BC∥EF,则∠DMC的大小为(  )21cnjy.com
( http: / / www.21cnjy.com / )
A.100° B.105° C.115° D.120°
6、如图,在中,AD、AE分别是边BC上的中线与高,,CD的长为5,则的面积为( )2·1·c·n·j·y
( http: / / www.21cnjy.com / )
A.8 B.10 C.20 D.40
7、下列长度的三条线段能组成三角形的是(  )
A.3,6,9 B.5,6,8 C.1,2,4 D.5,6,15
8、如图,将△ABC绕点C按逆时针方向旋转 ( http: / / www.21cnjy.com )至△DEC,使点D落在BC的延长线上.已知∠A=32°,∠B=30°,则∠ACE的大小是( )21教育名师原创作品
( http: / / www.21cnjy.com / )
A.63° B.58° C.54° D.56°
9、下列长度的三条线段能组成三角形的是( )
A.3,4,7 B.3,4,8 C.3,4,5 D.3,3,7
10、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是( )21*cnjy*com
( http: / / www.21cnjy.com / )
A.两点确定一条直线
B.两点之间,线段最短
C.三角形具有稳定性
D.三角形的任意两边之和大于第三边
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个三角形的其中两个内角为,,则这个第三个内角的度数为______.
2、如图,已知∠A=60°,∠B=20°,∠C=30°,则∠BDC的度数为_____.
( http: / / www.21cnjy.com / )
3、不等边三角形的最长边是9,最短边是4,第三边的边长是奇数,则第三边的长度是___.
4、如图,在△ABC中,点D在CB的延长线上,∠A=60°,∠ABD=110°,则∠C等于___.
( http: / / www.21cnjy.com / )
5、如图,△ABC≌△DCB,∠DBC=36°,则∠AOB=_____.
( http: / / www.21cnjy.com / )
三、解答题(5小题,每小题10分,共计50分)
1、如图,中,是角平分线,且,,求的度数.
( http: / / www.21cnjy.com / )
2、如图,点E为直线AB上一点,∠CAE=2∠B,BC平分∠ACD,求证:AB∥CD.
( http: / / www.21cnjy.com / )
3、如图,△ABC中,∠B ( http: / / www.21cnjy.com )AC=90°,点D是BC上的一点,将△ABC沿AD翻折后,点B恰好落在线段CD上的B'处,且AB'平分∠CAD.求∠BAB'的度数.【版权所有:21教育】
( http: / / www.21cnjy.com / )
4、如图,在△ABC中,∠ABC的角平分线交AC千点E,过点E作DF∥BC,交AB于点D,且EC平分∠BEF.
( http: / / www.21cnjy.com / )
(1)若∠ADE=50°,求∠BEC的度数;
(2)若∠ADE=α,则∠AED=  (含α的代数式表示).
5、将一副三角板中的两块直角三角尺的直角顶点C按如图1方式叠放在一起,其中,.
( http: / / www.21cnjy.com / )
(1)若,则的度数为_______;
(2)直接写出与的数量关系:_________;
(3)直接写出与的数量关系:__________;
(4)如图2,当且点E在直线的上方时,将三角尺固定不动,改变三角尺的位置,但始终保持两个三角尺的顶点C重合,这两块三角尺是否存在一组边互相平行?请直接写出角度所有可能的值___________.21世纪教育网版权所有
-参考答案-
一、单选题
1、A
【解析】
【分析】
三角形的任意两条之和大于 ( http: / / www.21cnjy.com )第三边,任意两边之差小于第三边,根据原理再分别计算每组线段当中较短的两条线段之和,再与最长的线段进行比较,若和大于最长的线段的长度,则三条线段能构成三角形,否则,不能构成三角形,从而可得答案.
【详解】
解: 所以以3cm,4cm,5cm为边能构成三角形,故A符合题意;
所以以3cm,3cm,6cm为边不能构成三角形,故B不符合题意;
所以以5cm,10cm,4cm为边不能构成三角形,故C不符合题意;
所以以1cm,2cm,3cm为边不能构成三角形,故D不符合题意;
故选A
【点睛】
本题考查的是三角形的三边之间的关系,掌握“利用三角形三边之间的关系判定三条线段能否组成三角形”是解本题的关键.
2、B
【解析】
【分析】
根据三角形外角的性质可直接进行求解.
【详解】
解:∵,,
∴;
故选B.
【点睛】
本题主要考查三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.
3、B
【解析】
【分析】
根据三角形具有稳定性,四边形不具有稳定性即可作出选择.
【详解】
解:平行四边形属于四边形,不具有稳定性,而三角形具有稳定性,故A符合题意;
故选:B.
【点睛】
本题考查了多边形和三角形的性质,解题的关键是记住三角形具有稳定性,四边形不具有稳定性.
4、C
【解析】
【分析】
设三角形第三边的长为x cm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.
【详解】
解:设三角形的第三边是xcm.则
7-3<x<7+3.
即4<x<10,
四个选项中,只有选项C符合题意,
故选:C.
【点睛】
本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.【出处:21教育名师】
5、B
【解析】
【分析】
首先根据直角三角形两锐角互余可算出∠C和∠ ( http: / / www.21cnjy.com )E的度数,再由“两直线平行,内错角相等”,可求出∠MDC的度数,在△CMD中,利用三角形内角和可求出∠CMD的度数.
【详解】
解:在△ABC和△DEF中,
∠BAC=∠EDF=90°,∠F=45°,∠B=60°,
∴∠C=90°-∠B=30°,
∠E=90°-∠F=45°,
∵BC∥EF,
∴∠MDC=∠E=45°,
在△CMD中,∠CMD=180°-∠C-∠MDC=105°.
故选:B.
【点睛】
本题主要考查三角形内角和,平行线的性质等内容,根据图形,结合定理求出每个角的度数是解题关键.
6、C
【解析】
【分析】
根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可.
【详解】
解:∵AD是边BC上的中线,CD的长为5,
∴CB=2CD=10,
的面积为,
故选:C.
【点睛】
本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长.
7、B
【解析】
【分析】
根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行解答即可得.
【详解】
解:根据三角形的三边关系,得
A、3+6=9,不能组成三角形,选项说法错误,不符合题意;
B、6+5=11>8,能组成三角形,选项说法正确,符合题意;
C、1+2=3<4,不能够组成三角形,选项说法错误,不符合题意;
D、5+6=11<15,不能够组成三角形,选项说法错误,不符合题意;
故选B.
【点睛】
本题考查了构成三角形的条件,解题的关键是掌握三角形的三边关系.
8、C
【解析】
【分析】
先根据三角形外角的性质求出∠A ( http: / / www.21cnjy.com )CD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.
【详解】
解:∵∠A=33°,∠B=30°,
∴∠ACD=∠A+∠B=33°+30°=63°,
∵△ABC绕点C按逆时针方向旋转至△DEC,
∴△ABC≌△DEC,
∴∠ACB=∠DCE,
∴∠BCE=∠ACD,
∴∠BCE=63°,
∴∠ACE=180°-∠ACD-∠BCE=180°-63°-63°=54°.
故选:C.
【点睛】
本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DEC.
9、C
【解析】
【分析】
根据组成三角形的三边关系依次判断即可.
【详解】
A、 3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误.
B、 3,4,8中3+4<8,故不能组成三角形,与题意不符,选项错误.
C、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确.www.21-cn-jy.com
D、 3,3,7中3+3<7,故不能组成三角形,与题意不符,选项错误.
故选:C.
【点睛】
本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.
10、C
【解析】
【分析】
根据三角形具有稳定性进行求解即可.
【详解】
解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,www-2-1-cnjy-com
故选C.
【点睛】
本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.
二、填空题
1、60°##60度
【解析】
【分析】
依题意,利用三角形内角和为:,即可;
【详解】
由题得:一个三角形的内角和为:;又已知两个其中的内角为:,;
∴ 第三个角为:;
故填:
【点睛】
本题主要考查三角形的内角和,关键在于熟练并运用基本的计算;
2、110°##110度
【解析】
【分析】
延长BD交AC于点E,根据三角形的外角性质计算,得到答案.
【详解】
延长BD交AC于点E,
∵∠DEC是△ABE的外角,∠A=60°,∠B=20°,
∴∠DEC=∠A+∠B=80°,
则∠BDC=∠DEC+∠C=110°,
( http: / / www.21cnjy.com / )
故答案为:110°.
【点睛】
本题考查了三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和,作辅助线DE是解题的关键.21·世纪*教育网
3、7
【解析】
【分析】
由题意根据三角形的三边关系即可求得第三边的范围,从而由不等边三角形和奇数的定义确定第三边的长度.
【详解】
解:设第三边长是c,则9﹣4<c<9+4,
即5<c<13,
又∵第三边的长是奇数,不等边三角形的最长边为9,最短边为4,
∴c=7.
故答案为:7.
【点睛】
本题考查三角形的三边关系,注意掌握已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.2-1-c-n-j-y
4、50°
【解析】
【分析】
首先根据平角的概念求出的度数,然后根据三角形内角和定理即可求出的度数.
【详解】
解:∵∠ABD=110°,
∴,

故答案为:50°.
【点睛】
此题考查了平角的概念,三角形三角形内角和定理,解题的关键是熟练掌握平角的概念,三角形三角形内角和定理.【来源:21cnj*y.co*m】
5、72°##72度
【解析】
【分析】
由全等三角形的对应角相等和三角形外角定理求解.
【详解】
解:如图
( http: / / www.21cnjy.com / )
△ABC≌△DCB,∠DBC=36°,
∠ACB=∠DBC=36°,
∠AOB=∠ACB+∠DBC=36°+36°=72°
故答案为:72°.
【点睛】
本题考查全等三角形对应角相等、三角形的一个外角等于与它不相邻的两个内角和,掌握相关知识是解题关键.
三、解答题
1、25°
【解析】
【分析】
根据三角形内角和求出∠CAB,再根据角平分线的性质求出∠BAE即可.
【详解】
解:∵∠B=52°,∠C=78°,
∴∠BAC=180°-52°-78°=50°,
∵AE平分∠BAC,
∴∠BAE=∠BAC=×50°=25°.
【点睛】
本题考查了角的平分线的性质、三角形的内角和定理,熟记三角形内角和为180°是解本题的关键.
2、见解析
【解析】
【分析】
根据三角形外角的性质,可得∠B=∠ACB,再由BC平分∠ACD,可得∠B=∠DCB,即可求证.
【详解】
证明:∵∠CAE=∠ACB+∠B,∠CAE=2∠B,
∴∠B=∠ACB,
又∵BC平分∠ACD,
∴∠ACB=∠DCB,
∴∠B=∠DCB,
∴AB∥CD(内错角相等,两直线平行).
【点睛】
本题主要考查了平行线的判定,三角形外角的性质,角平分线的定义,熟练掌握平行线的判定定理,三角形外角的性质定理是解题的关键.
3、60°
【解析】
【分析】
由折叠和角平分线可求∠BAD=30°,即可求出∠BAB'的度数.
【详解】
解:由折叠可知,∠BAD=∠B'AD,
∵AB'平分∠CAD.
∴∠B'AC=∠B'AD,
∴∠BAD=∠B'AC=∠B'AD,
∵∠BAC=90°,
∴∠BAD=∠B'AC=∠B'AD=30°,
∴∠BAB'=60°.
【点睛】
本题考查了折叠和角平分线,解题关键是掌握折叠角相等和角平分线的性质.
4、(1)77.5°;(2)90°﹣α;
【解析】
【分析】
(1)根据平行线的性质得到∠ABC ( http: / / www.21cnjy.com )=∠ADE=50°,根据角平分线的定义∠EBC=25°,根据角平分线的定义和平行线的性质可得∠BEC=∠C,根据三角形的内角和定理即可得到结论;
(2)根据角平分线的定义和平行线的性质以及三角形的内角和定理即可得到结论.
【详解】
解:(1)∵DF∥BC,
∴∠ADE=∠ABC=50°,∠CEF=∠C,
∵BE平分∠ABC,
∴∠DEB=∠EBC=25°,
∵EC平分∠BEF,
∴∠CEF=∠BEC=∠C,
∵∠BEC+∠C+∠EBC=180°,
∴∠BEC=77.5°;
(2)∵DF∥BC,
∴∠ADE=∠ABC=α,
∵BE平分∠ABC,
∴∠DEB=∠EBC=α,
∵EC平分∠BEF,
∴∠AED=∠CEF=(180°﹣α)=90°﹣α.
故答案为:90°﹣α.
【点睛】
本题考查平行的性质与判定,角平分线的性质,以及三角形的内角和定理,熟练应用平行的性质与判定结合角平分线的性质是解决本题的关键.21教育网
5、(1);(2);(3);(4)存在一组边互相平行;或或或或.
【解析】
【分析】
(1)根据垂直的性质结合图形求解即可;
(2)根据垂直的性质及各角之间的关系即可得出;
(3)由(2)可得,根据图中角度关系可得,将其代入即可得;
(4)根据题意,分五种情况进行分类讨论:①当时;②当时;③当时;④当时;⑤当时;分别利用平行线的性质进行求解即可得.【来源:21·世纪·教育·网】
【详解】
解:(1)∵,
∴,
∵,
∴,
故答案为:;
(2)∵,,
∴,,
即,,
∴,
故答案为:;
(3)由(2)得:

∴,
由图可知:,
∴,
故答案为:;
(4)①如图所示:当时,
( http: / / www.21cnjy.com / )

由(2)可知:;
②如图所示:当时,
( http: / / www.21cnjy.com / )

③如图所示:当时,
( http: / / www.21cnjy.com / )

∴;
④如图所示:当时,
( http: / / www.21cnjy.com / )

∴;
⑤如图所示:当时,延长AC交BE于点F,
( http: / / www.21cnjy.com / )
∴,
∵,
∴,
∴;
综合可得:的度数为:或或或或,
故答案为:或或或或.
【点睛】
题目主要考查垂直的性质、各角之间的计算、平行线的性质等,熟练掌握平行线的性质进行分类讨论是解题关键.21·cn·jy·com
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)