《探索多边形的内角和》
一、自主预习
1.三角形是如何定义的?
2.仿照三角形定义,你能学着给四边形、五边形……边形下定义吗?
二、合作探究
1.三角形的内角和是多少度?你是怎么得出的?
2.四边形的内角和是多少?你又是怎么得出的?
3.在四边形内角和的探索过程中,用到了几种方法,你认为哪种方法好?请讲述你的理由。
4.根据四边形的内角和的求法,你能否
求出五边形的内角和?试试看。
5.小组合作,完成下面的表格。
结论:
①过边形的任一顶点有 对角线,这些对角线将n边形分成 个三角形?
②边形的内角和是 。
三、训练巩固
1.求八边形的内角和的度数。
2.一个多边形的内角和为1440°,则它是几边形?
3.一个多边形的边数增加1,则它的内角和将如何变化?
四、拓展延伸
1.想一想:观察图中的多边形,它们的边、角有什么特点?
正多边形定义:在平面内,每个内角都 、每条边也都 的多边形叫做正多边形。
2.议一议:
①一个多边形的边都相等,它的内角一定都相等吗?
②一个多边形的内角都相等,它的边一定都相等吗?
3.练一练:
①正三角形、正方形、正五边形、正六边形、正八边形的内角分别是多少度?
②正边形的内角是多少度?
③一个正多边形的每个内角都是150°,求它的边数 ?
五、知识小结,布置作业
1.本节课你学到了哪些知识?
2.在本节课的学习中用到了哪些数学思想?
作业:A.127页习题4.10
B.探究五角星的五个角的度数之和。
六、教学反思(学习心得)