4.6.3 余角和补角 课件(共18张PPT)

文档属性

名称 4.6.3 余角和补角 课件(共18张PPT)
格式 pptx
文件大小 1.1MB
资源类型 试卷
版本资源 华师大版
科目 数学
更新时间 2022-12-01 17:11:11

图片预览

文档简介

(共18张PPT)
4.6.3 余角和补角
华师大版 七年级上册
教学目标
【教学目标】
1.在具体的现实情境中,认识一个角的余角和补角,掌握余角和补角的性质;
2.会根据余角和补角的性质进行简单的运算和说明理由;
3.进一步提高学生的抽象概括能力、发展空间观念和知识运用能力,学会简单的逻辑推理.
【重点】认识角的互余和互补关系及性质.
【难点】用余角和补角进行简单的推理.
复习回顾
对于三角板,我们已经很熟悉了,我们来回顾一下三角板各个角的度数
45°
45°
90°
60°
30°
90°
新知探究
在我们所用的一副三角尺中,每块都有一个角是90° ,而其他两个角,一块是30°与60°,另一块都是45°,它们的和都是90°.
在图中,用量角器量一量两组图中各角的大小,发现也有这样的特殊关系.
新知探究
1
如果两个角的和等于90°( 直角 ),就说这两个角互为余角 ( 简称为两个角互余 ).
如图,可以说 ∠1 是 ∠2 的余角,或 ∠2 是
∠1的余角,或 ∠1和 ∠2互余.
2
新知探究
如果两个角的和等于180°(平角),就说这两个角互为补角 ( 简称为两个角互补 ).
如图,可以说 ∠3 是 ∠4 的补角,或 ∠4是 ∠3 的补角,或 ∠3 和 ∠4 互补.
4
3
新知探究
如图,∠3 +∠4 = 180°,所以∠3、∠4互为补角.
新知探究
想想看,如果∠1与∠3都是∠2的余角,∠1和∠3有什么关系 相等角的补角又有什么关系
同角 (等角) 的补角相等.
结论:
类似地,可以得到:
同角 (等角) 的余角相等.
新知探究
对于余角是否也有类似性质?
补角的性质:同角(等角)的补角相等.
若∠1与∠2和∠3都互为余角,
所以 ∠2=∠3.
那么 ∠2=90 -∠1,
∠3=90 -∠1,
余角的性质:同角(等角)的余角相等.
新知探究
例3、已知∠α=50°17',求∠a的余角和补角.
解:∠α的余角= 90°- 50°17' = 39°43'
∠α的补角= 180° - 50°17' = 129°43'.
课堂练习
1.一个角的余角是它的2倍,这个角的度数是(  )
A.30° B.45° C.60° D.75°
A
2.下列说法正确的是(  )
A.一个角的补角一定大于它本身
B.一个角的余角一定小于它本身
C.一个钝角减去一个锐角的差一定是一个锐角
D.一个角的余角一定小于其补角
D
课堂练习
4.已知∠A与∠B互余,∠B与∠C互补,若∠A=60°,则∠C的度数是_______.
150°
5. ∠1 与 ∠2 互余,∠1 = (6x + 8)°,∠2 = (4x-8)°,
则∠1= ,∠2= .
62°
28°
3.已知∠α的补角是125°,则∠α的度数是( ).
A.55° B.65° C.75° D.85°
A
课堂练习
6.(1)若∠1与∠2互余,∠2与∠3互余,
则______=______,根据是_________ .
(2)若∠3与∠4互补,∠6与∠5互补,且∠3=∠6,
则______=______,根据是_______ __.
∠1
∠3
同角的余角相等
等角的补角相等
∠4
∠5
课堂练习
7.一个角的补角加上24°,恰好等于这个角的5倍,求这个角的度数.
解:设这个角的度数为x°,依题意,得:
180-x+24=5x.
解得:x=34.
所以这个角的度数是34°.
课堂练习
8. 如图,已知∠ACB=∠CDB=90°.
(1) 图中有哪几对互余的角?
(2) 图中哪几对角是相等的角(直角除外)?为什么?
∠A+∠B=90°
∠A+∠2=90°
∠1+∠B=90°
∠1+∠2=90°
∠B=∠2
∠A=∠1
( 同角的余角相等 )
( 同角的余角相等 )
A
C
D
1
2
B
课堂小结
同角或等角的
补角相等
同角或等角的
余角相等
互余 互补
两角间的数量关系
对应图形
性质
谢谢
21世纪教育网(www.21cnjy.com)
中小学教育资源网站
兼职招聘:
https://www.21cnjy.com/recruitment/home/admin