10.3.1 频率的稳定性
选择题
1.下列说法正确的是( )
A.任何事件的概率总是在(0,1)之间
B.频率是客观存在的,与试验次数无关
C.随着试验次数的增加,事件发生的频率一般会稳定于概率
D.概率是随机的,在试验前不能确定
2.某班学生在一次数学考试中的成绩分布如表
分数段
人数 2 5 6 8 12 6 4 2
那么分数在中的频率约是(精确到0.01)( )
A.0.18 B.0.47 C.0.50 D.0.38
3.在一次抛硬币的试验中,同学甲用一枚质地均匀的硬币做了100次试验,发现正面朝上出现了45次,那么出现正面朝上的频率和概率分别为( )
A.0.45,0.45 B.0.5,0.5 C.0.5,0.45 D.0.45,0.5
4.根据某教育研究机构的统计资料,在校学生近视的概率为40%,某眼镜商要到一中学给学生配眼镜,若已知该校学生总人数为1200,则该眼镜商应准备眼镜的数目为( )
A.460 B.480 C.不少于480 D.不多于480
5.(多选题)给出下列四个命题,其中正确的命题有( )
A.做100次抛硬币的试验,结果51次出现正面朝上,因此,出现正直朝上的概率是
B.随机事件发生的频率就是这个随机事件发生的概率
C.抛掷骰子100次,得点数是1的结果有18次,则出现1点的频率是
D.随机事件发生的频率不一定是这个随机事件发生的概率
6.(多选题)某超市随机选取1000位顾客,记录了他们购买甲 乙 丙 丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.
顾客人数 商品 甲 乙 丙 丁
100 √ × √ √
217 × √ × √
200 √ √ √ ×
300 √ × √ ×
85 √ × × ×
98 × √ × ×
根据表中数据,下列结论正确的是( )
A.顾客购买乙商品的概率最大
B.顾客同时购买乙和丙的概率约为0.2
C.顾客在甲 乙 丙 丁中同时购买3种商品的概率约为0.3
D.顾客仅购买1种商品的概率不大于0.3
二、填空题
7.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20000辆汽车的信息,时间是从某年的5月1日到下一年的4月30日,发现共有600辆汽车的挡风玻璃破碎,则一辆汽车在一年内挡风玻璃破碎的概率近似为_______.
8.对某批产品进行抽样检查,数据如下,根据表中的数据,如果要从该批产品中抽到950件合格品,则大约需要抽查_________件产品.
抽查件数 50 100 200 300 500
合格件数 47 92 192 285 475
9.下列说法:
①频率是反映事件发生的频繁程度,概率是反映事件发生的可能性大小;
②百分率是频率,但不是概率;
③频率是不能脱离试验次数的实验值,而概率是具有确定性的不依赖于试验次数的理论值;
④频率是概率的近似值,概率是频率的稳定值.
其中正确的是______________.
10.为了解某中学生遵守《中华人民共和国交通安全法》的 情况,调查部门在该校进行了如下的随机调查,向被调查者提出两个问题:
⑴你的学号是奇数吗?⑵在过路口时你是否闯过红灯?
要求被调查者背对着调查人员抛掷一枚硬币,如果出现正面,就回答第一个问题,否则就回答第二个问题.被调查者不必告诉调查人员自己回答的是哪一个问题,只需回答“是”或“不是”,因为只有调查者本人知道回答了哪一个问题,所以都如实地做了回答.结果被调查的800人(学号从1至800)中有240人回答了“是”.由此可以估计这800人中闯过红灯的人数是__________
三、解答题
11.某教授为了测试贫困地区和发达地区的同龄儿童的智力出了10个智力题,每个题10分,然后做了统计,下表是统计结果:
贫困地区
参加测试的人数 30 50 100 200 500 800
得60分以上的人数 16 27 52 104 256 402
得60分以上的频率
发达地区
参加测试的人数 30 50 100 200 500 800
得60分以上的人数 17 29 56 111 276 440
得60分以上的频率
(1)利用计算器计算两地区参加测试的儿童中得60分以上的频率(结果精确到0.001);
(2)求两个地区参加测试的儿童得60分以上的概率.
12.某公司在过去几年内使用某种型号的灯管1 000根,该公司对这些灯管的使用寿命(单位:h)进行了统计,统计结果如表所示:
分组
频数 48 121 208 223
频率
分组
频数 193 165 42
频率
(1)将各组的频率填入表中;
(2)根据上述统计结果,估计该种型号灯管的使用寿命不足1500 h的概率.
10.3.1 频率的稳定性答案
选择题
1.下列说法正确的是( )
A.任何事件的概率总是在(0,1)之间
B.频率是客观存在的,与试验次数无关
C.随着试验次数的增加,事件发生的频率一般会稳定于概率
D.概率是随机的,在试验前不能确定
【答案】C
【解析】不可能事件的概率为0,必然事件的概率为1,故A错;
频率是由试验的次数决定的;故B错;概率是频率的稳定值,故C正确,D错.故选:C.
2.某班学生在一次数学考试中的成绩分布如表
分数段
人数 2 5 6 8 12 6 4 2
那么分数在中的频率约是(精确到0.01)( )
A.0.18 B.0.47 C.0.50 D.0.38
【答案】A
【解析】某班总人数,成绩在中的有8人,其频率为.故选:A
3.在一次抛硬币的试验中,同学甲用一枚质地均匀的硬币做了100次试验,发现正面朝上出现了45次,那么出现正面朝上的频率和概率分别为( )
A.0.45,0.45 B.0.5,0.5 C.0.5,0.45 D.0.45,0.5
【答案】D
【解析】根据由频率和概率的概念,可知出现正面朝上的频率是,
出现正面朝上的概率是0.5.故选:D.
4.根据某教育研究机构的统计资料,在校学生近视的概率为40%,某眼镜商要到一中学给学生配眼镜,若已知该校学生总人数为1200,则该眼镜商应准备眼镜的数目为( )
A.460 B.480 C.不少于480 D.不多于480
【答案】C
【解析】根据题意,知该校近视的学生人数约为,结合实际情况,眼镜商应准备眼镜不少于480副.故选:C
5.(多选题)给出下列四个命题,其中正确的命题有( )
A.做100次抛硬币的试验,结果51次出现正面朝上,因此,出现正直朝上的概率是
B.随机事件发生的频率就是这个随机事件发生的概率
C.抛掷骰子100次,得点数是1的结果有18次,则出现1点的频率是
D.随机事件发生的频率不一定是这个随机事件发生的概率
【答案】CD
【解析】对于A,混淆了频率与概率的区别,故A错误;
对于B,混淆了频率与概率的区别,故B错误;
对于C,抛掷骰子次,得点数是的结果有次,则出现点的频率是,符合频率定义,故C正确;对于D,频率是概率的估计值,故D正确.故选:CD.
6.(多选题)某超市随机选取1000位顾客,记录了他们购买甲 乙 丙 丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.
顾客人数 商品 甲 乙 丙 丁
100 √ × √ √
217 × √ × √
200 √ √ √ ×
300 √ × √ ×
85 √ × × ×
98 × √ × ×
根据表中数据,下列结论正确的是( )
A.顾客购买乙商品的概率最大
B.顾客同时购买乙和丙的概率约为0.2
C.顾客在甲 乙 丙 丁中同时购买3种商品的概率约为0.3
D.顾客仅购买1种商品的概率不大于0.3
【答案】BCD
【解析】对于A,由于购买甲商品的顾客有685位,购买乙商品的顾客有515位,故A错误;
对于B, 从统计表可以看出,在这1000位顾客中,有200位顾客同时购买了乙和丙,
顾客同时购买乙和丙的概率可以估计为,故B正确;
对于C, 从统计表可以看出,在这1000位顾客中,有100位顾客同时的买了甲 丙 丁,另有200位顾客同时购买了甲 乙 丙,其他顾客最多购买了2种商品,
顾客在甲 乙 丙 丁中同时购买3种商品的概率可以估计为,故C正确;
对于D, 从统计表可以看出,在这1000位顾客中,有183位顾客仅购买1种商品,
顾客仅购买1种商品的概率可以估计为,故D正确.故选:BCD.
二、填空题
7.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20000辆汽车的信息,时间是从某年的5月1日到下一年的4月30日,发现共有600辆汽车的挡风玻璃破碎,则一辆汽车在一年内挡风玻璃破碎的概率近似为_______.
【答案】
【解析】 实验次数较大,可用频率估计概率 概率.
8.对某批产品进行抽样检查,数据如下,根据表中的数据,如果要从该批产品中抽到950件合格品,则大约需要抽查_________件产品.
抽查件数 50 100 200 300 500
合格件数 47 92 192 285 475
【答案】1000
【解析】 根据题表中数据可知合格品出现的频率为0.94,0.92,0.96,0.95,0.95,
合格品出现的概率约为0.95,故要从该批产品中抽到950件合格品大约需要抽查1000件产品.
9.下列说法:
①频率是反映事件发生的频繁程度,概率是反映事件发生的可能性大小;
②百分率是频率,但不是概率;
③频率是不能脱离试验次数的实验值,而概率是具有确定性的不依赖于试验次数的理论值;
④频率是概率的近似值,概率是频率的稳定值.
其中正确的是______________.
【答案】①③④
【解析】对于①,由频率和概率概念: 频率是反映事件发生的频繁程度,概率是反映事件发生的可能性大小.可知①正确;对于②,概率也可以用百分率表示,故②错误.对于③,频率与试验次数相关,而概率与试验次数无关,所以③正确;对于④,对于不同批次的试验,频率不一定相同,但概率相同,因而频率是概率的近似值,概率是频率的稳定值,所以④正确.由概率和频率的定义中可知①③④正确.
10.为了解某中学生遵守《中华人民共和国交通安全法》的 情况,调查部门在该校进行了如下的随机调查,向被调查者提出两个问题:
⑴你的学号是奇数吗?⑵在过路口时你是否闯过红灯?
要求被调查者背对着调查人员抛掷一枚硬币,如果出现正面,就回答第一个问题,否则就回答第二个问题.被调查者不必告诉调查人员自己回答的是哪一个问题,只需回答“是”或“不是”,因为只有调查者本人知道回答了哪一个问题,所以都如实地做了回答.结果被调查的800人(学号从1至800)中有240人回答了“是”.由此可以估计这800人中闯过红灯的人数是__________
【答案】80
【解析】要调查800名学生,在准备的两个问题中每一个问题被问到的概率相同,
∴第一个问题可能被询问400次,
∵在被询问的400人中有200人学号是奇数,而有240人回答了“是”,
∴估计有40个人闯过红灯,在400人中有40个人闯过红灯,
∴根据概率的知识来计算这800人中有过闯过红灯的人数为80.
三、解答题
11.某教授为了测试贫困地区和发达地区的同龄儿童的智力出了10个智力题,每个题10分,然后做了统计,下表是统计结果:
贫困地区
参加测试的人数 30 50 100 200 500 800
得60分以上的人数 16 27 52 104 256 402
得60分以上的频率
发达地区
参加测试的人数 30 50 100 200 500 800
得60分以上的人数 17 29 56 111 276 440
得60分以上的频率
(1)利用计算器计算两地区参加测试的儿童中得60分以上的频率(结果精确到0.001);
(2)求两个地区参加测试的儿童得60分以上的概率.
【答案】(1)见解析(2)贫困地区和发达地区参加测试的儿童得60分以上的概率分别为0.5和0.55.
【解析】(1)根据频率计算公式,可得如下表所示:
贫困地区
参加测试的人数 30 50 100 200 500 800
得60分以上的人数 16 27 52 104 256 402
得60分以上的频率 0.533 0.540 0.520 0.520 0.512 0.503
发达地区
参加测试的人数 30 50 100 200 500 800
得60分以上的人数 17 29 56 111 276 440
得60分以上的频率 0.567 0.580 0.560 0.555 0.552 0.550
(2)随着测试人数的增加,两个地区参加测试的儿童得60分以上的频率逐渐趋近于0.5和0.55.
故贫困地区和发达地区参加测试的儿童得60分以上的概率分别为0.5和0.55.
12.某公司在过去几年内使用某种型号的灯管1 000根,该公司对这些灯管的使用寿命(单位:h)进行了统计,统计结果如表所示:
分组
频数 48 121 208 223
频率
分组
频数 193 165 42
频率
(1)将各组的频率填入表中;
(2)根据上述统计结果,估计该种型号灯管的使用寿命不足1500 h的概率.
【答案】(1)见解析;(2)0.6.
【解析】(1);(2)0.6.
分组
频数 48 121 208 223
频率 0.048 0.121 0.208 0.223
分组
频数 193 165 42
频率 0.193 0.165 0.042
(2)样本中寿命不足1500 h的频数是,所以样本中寿命不足1500 h的频率是,即该种型号灯管的使用寿命不足1500 h的概率约为0.6.
4 / 10