高中数学人教A版2019必修第二册 10.3.2 随机模拟 导学案(含答案)

文档属性

名称 高中数学人教A版2019必修第二册 10.3.2 随机模拟 导学案(含答案)
格式 docx
文件大小 223.0KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2022-12-02 08:19:11

图片预览

文档简介

10.3.2 随机模拟
1.理解随机模拟试验出现地意义.
2.利用随机模拟试验求概率.
1.数学抽象:随机模拟试验的理解.
2.数学运算:利用随机模拟试验求概率.
重点:利用随机模拟试验求概率.
难点:利用随机模拟试验求概率.
预习导入
阅读课本255-257页,填写。
1.随机模拟
我们知道,利用________或________________可以产生随机数.实际上,我们也可以根据不同的随机试验构建相应的随机数模拟实验,这样就可以快速地进行大量重复试验了,这么随机模拟方式叫做随机模拟.
我们称利用随机模拟解决问题地方法为蒙特卡洛(Monte Carlo)方法.
1.下列不能产生随机数的是 (  )
A.抛掷骰子试验 B.抛硬币
C.计算器 D.正方体的六个面上分别写有
2.已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示未命中;再以每三个随机数为一组代表三次投篮的结果.经随机模拟产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为(  )
A.0.35 B.0.25
C.0.20 D.0.15
3.已知某射击运动员每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,至多击中1次的概率:先由计算器产生0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:
5 727 0 293 7 140 9 857 0 347
4 373 8 636 9 647 1 417 4 698
0 371 6 233 2 616 8 045 6 011
3 661 9 597 7 424 6 710 4 281
据此估计,该射击运动员射击4次至多击中1次的概率为(  )
A.0.95 B.0.1
C.0.15 D.0.05
4.一个袋中有8个大小、形状相同的小球,6个白球2个红球.现任取1个,则恰好第三次摸到红球的概率___________.
题型一 利用随机模拟实验求概率
例1 从你所在班级任意选出6名同学,调查他们的出生月份,假设出生在一月,二月……十二月是等可能的.设事件“至少有两人出生月份相同”,设计一种试验方法,模拟20次,估计事件发生的概率.
例2 在一次奥运会男子羽毛球单打比赛中,运动员甲和乙进入了决赛.假设每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4.利用计算机模拟试验,估计甲获得冠军的概率.
跟踪训练一
1.袋子中有四个小球,分别写有“中、华、民、族”四个字,有放回地从中任取一个小球,直到“中”“华”两个字都取到才停止.用随机模拟的方法估计恰好抽取三次停止的概率,利用电脑随机产生0到3之间取整数值的随机数,分别用代表“中、华、民、族”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:
由此可以估计,恰好抽取三次就停止的概率为( )
A. B. C. D.
2.一个袋中有7个大小、形状相同的小球,6个白球1个红球.现任取1个,若为红球就停止,若为白球就放回,搅拌均匀后再接着取.试设计一个模拟试验,计算恰好第三次摸到红球的概率.
1.关于随机数的说法正确的是(  )
A.随机数就是随便取的一些数字
B.随机数是用计算机或计算器随便按键产生的数
C.用计算器或计算机产生的随机数为伪随机数
D.不能用伪随机数估计概率
2.袋子中有四个小球,分别写有“春、夏、秋、冬”四个字,从中任取一个小球,取到“冬”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出的小球上分别写有“春、夏、秋、冬”四个字,每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:
13 24 12 32 43 14 24 32 31 21 23 13 32 21 24 42 13 32 21 34
据此估计,直到第二次就停止的概率为( )
A. B. C. D.
3.已知某射击运动员,每次击中目标的概率都是.现采用随机模拟的方法估计该运动员射击4次至少击中3次的概率:先由计算器算出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:
5727 0293 7140 9857 0347 4373 8636 9647 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 6710 4281
据此估计,该射击运动员射击4次至少击中3次的概率为_____________.
A.0.85 B.0.8192 C.0.8 D.0.75
4.一份测试题包括6道选择题,每题只有一个选项是正确的.如果一个学生对每一道题都随机猜一个答案,用随机模拟方法估计该学生至少答对3道题的概率为_____________.
5.盒子中仅有4个白球和5个黑球,从中任意取出一个球.
(1)“取出的球是黄球”是什么事件?它的概率是多少?
(2)“取出的球是白球”是什么事件?它的概率是多少?
(3)“取出的球是白球或黑球”是什么事件?它的概率是多少?
(4)设计一个用计算器或计算机模拟上面取球的试验,并模拟100次,估计“取出的球是白球”的概率.
答案
小试牛刀
1. D
2.B.
3.D.
4. 0.25.
自主探究
例1 【答案】见解析
【解析】根据假设,每个人的出生月份在12个月中是等可能的,而且相互之间没有影响,所以观察6个人的出生月份可以看成可重复试验.
因此,可以构建如下有放回摸球试验进行模拟:在袋子中装入编号为1,2,…,12的12个球,这些球除编号外没有什么差别.有放回地随机从袋中摸6次球,得到6个数代表6个人的出生月份,这就完成了一次模拟试验.如果这6个数中至少有2个相同,表示事件发生了.重复以上模拟试验20次,就可以统计出事件发生的频率.
例2 【答案】
【解析】 设事件“甲获得冠军”,事件“单局比赛甲胜”,则.用计算器或计算机产生1~5之间的随机数,当出现随机数1,2或3时,表示一局比赛甲获胜,其概率为0.6.由于要比赛3局,所以每3个随机数为一组.例如,产生20组随机数:
423 123 423 344 114 453 525 332 152 342
534 443 512 541 125 432 334 151 314 354
相当于做了20次重复试验.其中事件发生了13次,对应的数组分别是423,123,423,114,332,152,342,512,125,432,334,151,314,用频率估计事件的概率的近似似值为.
跟踪训练一
1.【答案】C
【解析】由随机产生的随机数可知恰好抽取三次就停止的有,共4组随机数,恰好抽取三次就停止的概率约为,故选C.
2.【答案】0.1
【解析】用1,2,3,4,5,6表示白球,7表示红球,利用计算器或计算机产生1到7之间取整数值的随机数,因为要求恰好第三次摸到红球的概率,所以每三个随机数作为一组.例如,产生20组随机数.
666 743 671 464 571
561 156 567 732 375
716 116 614 445 117
573 552 274 114 622
就相当于做了20次试验,在这组数中,前两个数字不是7,
第三个数字恰好是7,就表示第一次、第二次摸的是白球,
第三次恰好是红球,它们分别是567和117共两组,因此
恰好第三次摸到红球的概率约为 =0.1.
当堂检测
1-2.CB 
3. 0.75
4. 0.16
5. 【答案】(1)答案见解析.(2)答案见解析.(3)答案见解析.(4)答案见解析.
【解析】(1)从中任意取出一个球,“取出的球是黄球”是不可能事件,它的概率为.
(2)“取出的球是白球”是随机事件事件,它的概率是.
(3)“取出的球是白球或是黑球”是必然事件,它的概率是
(4)用计算机产生1-9的随机数,规定1-4代表白球,5-9代表黑球.
7 6 8 4 1
3 8 1 6 4
8 6 8 4 8
8 4 6 2 1
5 1 5 5 2
2 8 3 6 5
9 4 3 5 7
9 7 9 5 3
3 4 4 3 4
4 8 4 9 2
4 9 2 1 1
6 4 5 5 2
7 8 4 3 4
9 6 9 8 4
6 7 5 8 9
9 4 8 6 8
7 3 7 1 3
8 3 2 6 6
4 3 1 7 7
2 2 4 9 5
从表中可以查1-4数据有46个, 5-9数据有54个.
“取出的球是白球”的概率为:.
1 / 7