11.2.1三角形的内角(1) 课件(25张PPT)

文档属性

名称 11.2.1三角形的内角(1) 课件(25张PPT)
格式 zip
文件大小 1.1MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2022-12-02 22:38:59

图片预览

文档简介

(共25张PPT)
11.2.1三角形的内角
人教版八年级上册
教学目标
2.会运用三角形内角和定理进行计算.(难点)
1.会用平行线的性质与平角的定义证明三角形内
角和等于180°.(重点)
新知导入
我们在小学已经知道,任意一个三角形的内角和等于180°.与三角形的形状、大小无关,所以它们的说法都是错误的.
思考:除了度量以外,你还有什么办法可以验证三角形的内角和为180°呢
折叠
还可以用拼接的方法,你知道怎样操作吗?
新知讲解
锐角三角形
测量
480
720
600
600+480+720=1800
(学生运用学科工具—量角器测量演示)
新知讲解
剪拼
A
B
C
2
1
(小组合作,讨论剪拼方法。各小组代表板演剪拼过程)
新知讲解
三角形的三个内角拼到一起恰好构成一个平角.
观测的结果不一定可靠,还需要通过数学知识来说明.从上面的操作过程,你能发现证明的思路吗?
还有其他的拼接方法吗?
三角形的内角和定理的证明

探究:在纸上任意画一个三角形,将它的内角剪下拼合在一起.
新知讲解
验证结论
三角形三个内角的和等于180°.
求证:∠A+∠B+∠C=180°.
已知:△ABC.
证法1:过点A作l∥BC,
∴∠B=∠1.
(两直线平行,内错角相等)
∠C=∠2.
(两直线平行,内错角相等)
∵∠2+∠1+∠BAC=180°,
∴∠B+∠C+∠BAC=180°.
1
2
新知讲解
证法2:延长BC到D,过点C作CE∥BA,
∴ ∠A=∠1 .
(两直线平行,内错角相等)
∠B=∠2.
(两直线平行,同位角相等)
又∵∠1+∠2+∠ACB=180°,
∴∠A+∠B+∠ACB=180°.
C
B
A
E
D
1
2
新知讲解
C
B
A
E
D
F
证法3:过D作DE∥AC,作DF∥AB.
∴ ∠C=∠EDB,∠B=∠FDC.
(两直线平行,同位角相等)
∠A+∠AED=180°,
∠AED+∠EDF=180°,
(两直线平行,同旁内角相补)
∴ ∠A=∠EDF.
∵∠EDB+∠EDF+∠FDC=180°,
∴∠A+∠B+∠C=180°.
想一想:同学们还有其他的方法吗?
新知讲解
思考:多种方法证明三角形内角和等于180°的核心是什么?
借助平行线的“移角”的功能,将三个角转化成一个平角.
C
A
B
1
2
3
4
5
l
A
C
B
1
2
3
4
5
l
P
6
m
A
B
C
D
E
新知讲解
C
2
4
A
B
3
E
Q
D
F
P
G
H
1
B
G
C
2
4
A
3
E
D
F
H
1
试一试:同学们按照上图中的辅助线,给出证明步骤?
新知讲解
知识要点
在这里,为了证明的需要,在原来的图形上添画的线叫做辅助线.在平面几何里,辅助线通常画成虚线.
思路总结
为了证明三个角的和为180°,转化为一个平角或同旁内角互补等,这种转化思想是数学中的常用方法.
作辅助线
例题讲解
例1 如图,在△ABC中, ∠BAC=40 °, ∠B=75 °,AD是△ABC的角平分线,求∠ADB的度数.
A
B
C
D
解:由∠BAC=40 °, AD是△ABC的角平分线,得
∠BAD= ∠BAC=20 °.
在△ABD中,
∠ADB=180°-∠B-∠BAD
=180°-75°-20°
=85°.
三角形的内角和定理的运用

例题讲解

.
A
D

.
C
B
.

E
例2 如图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80 °方向,C岛在B岛的北偏西40 °方向.从B岛看A,C两岛的视角∠ABC是多少度?从C岛看A、B两岛的视角∠ACB是多少度?
新知讲解
基本图形
由三角形的内角和定理易得∠A+∠B=∠C+∠D.
由三角形的内角和定理易得∠1+∠2=∠3+∠4.
总结归纳
4
例题讲解
例3 在△ABC 中, ∠A 的度数是∠B 的度数的3倍,∠C 比∠B 大15°,求∠A,∠B,∠C的度数.
解: 设∠B为x°,则∠A为(3x)°,
∠C为(x + 15)°, 从而有
3x + x +(x + 15)= 180.
解得 x = 33.
所以 3x = 99 , x + 15 = 48.
答: ∠A, ∠B, ∠C的度数分别为99°, 33°, 48°.
几何问题借助方程来解. 这是一个重要的数学思想.
强化练习
②在△ABC中,∠A :∠B:∠C=1:2:3,则△ABC是
_________三角形 .
练一练:
①在△ABC中,∠A=35°,∠ B=43 °,则∠ C= .
③在△ABC中, ∠A= ∠B+10°, ∠C= ∠A + 10°, 则 ∠A= , ∠ B= ,∠ C= .
102°
直角
60°
50°
70°
课堂总结
三角形的
内角和定理
证明
了解添加辅助线的方法及其目的
内容
三角形内角和等于180 °
随堂练习
1.求出下列各图中的x值.
x=70
x=60
x=30
x=50
随堂练习
2.如图,则∠1+∠2+∠3+∠4=___________ .
B
A
C
D
4
1
3
2
E
40°

280 °
随堂练习
3.如图,在△ABC中,BP平分∠ABC,CP平分∠ACB,若∠BAC=60°,求∠BPC的度数.
解:∵△ABC中,∠A=60°,
∴∠ABC+∠ACB=120°.
∵BP平分∠ABC,CP平分∠ACB,
∴∠PBC+∠PCB= (∠ABC+∠ACB)=60°.
∵∠PBC+∠PCB+∠BPC=180°,
∴∠BPC=180°-60°=120°.
随堂练习
4.如图,在△ABC中,∠B=42°,∠C=78°,AD平分∠BAC.求∠ADC的度数.
解:∵∠B=42°,∠C=78°,
∴∠BAC=180°-∠B-∠C=60°.
∵AD平分∠BAC,
∴∠CAD= ∠BAC=30°,
∴∠ADC=180°-∠B-∠CAD=72°.
随堂练习
5.如图,四边形ABCD中,点E在BC上,∠A+∠ADE=180°,∠B=78°,∠C=60°,求∠EDC的度数.
解:∵∠A+∠ADE=180°,
∴AB∥DE,
∴∠CED=∠B=78°.
又∵∠C=60°,
∴∠EDC=180°-(∠CED+∠C)
=180°-(78°+60°)
=42°.
谢谢
21世纪教育网(www.21cnjy.com)
中小学教育资源网站
兼职招聘:
https://www.21cnjy.com/recruitment/home/admin