中小学教育资源及组卷应用平台
北师大版八年级数学上册第五章《5.应用二元一次方程组-里程碑上的数》课时练习题(含答案)
一、单选题
1.一个两位数,十位数字比个位数字大4;将这个两位数的十位数字与个位数字对调后,比原数减少了36,求原两位数.若设原两位数十位数字是x,个位数字是y,则列出方程组为( )
A. B.
C. D.
2.如图,AB⊥BC,∠ABC的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°,y°,那么下面可以求出这两个角的度数的方程组是( ).
A. B. C. D.
3.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了,下坡用了,根据题意可列方程组( )
A. B.
C. D.
4.《算法统宗》中有一道题为“隔沟计算”,其原文是:甲乙隔沟放牧,二人暗里参详,甲云得乙九只羊,多你一倍之上;乙说得甲九只羊,二家之数相当,两人闲坐恼心肠,画地算了半晌.这个题目的意思是:甲、乙两个牧人隔着山沟放羊,两人都在暗思对方有多少只羊,甲对乙说:“我若得你9只羊,我的羊多你一倍.”乙对甲说:“我若得你9只羊,我们两家的羊数就一样多.”设甲有x只羊,乙有y只羊,根据题意列出二元一次方程组为( )
A. B.
C. D.
5.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,物品价格为y钱,可列方程组为( )
A. B. C. D.
6.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则与的和是( )
A.9 B.10 C.11 D.12
7.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x元,水笔每支为y元,那么根据题意,下列方程组中,正确的是( )
A. B. C. D.
8.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )
A.9天 B.11天 C.13天 D.22天
二、填空题
9.《九章算术》中记载了一道数学问题,其译文为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hú,是古代一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶可以盛酒斛、1个小桶可以盛酒斛.根据题意,可列方程组为__________.
10.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十,问甲、乙持钱各几何?”译文是:今有甲、乙两人持钱不知道各有多少,甲若得到乙所有钱的,则甲有50钱,乙若得到甲所有钱的,则乙也有50钱,问甲、乙各持钱多少?设甲持钱数为x钱,乙持钱数为y钱,列出关于x,y的二元一次方程组是______.
11.某公司向银行申请了甲、乙两种贷款,共计68万元,每年需付出3.2万元利息.已知甲种贷款每年的利率为4.5%,乙种贷款每年的利率为5%,则该公司申请的甲种贷款的数额为_____万元.
12.小明作业本中有一页被墨水污染了,已知他所列的方程组是正确的,写出题中被墨水污染的条件和第一个方程,并求解这道应用题.应用题:小东在某商场看中的一台电视和一台空调在“五一”前共需要5500元,由于该商场开展“五一”促销活动,同样的电视打八折销售,于是小东在促销期间购买了同样的电视一台,空调两台,共花费7200元,求“五一”前同样的电视和空调每台各多少元?
解:设“五一”的同样的电视每台x元,空调每台y元,根据题意,得.
被墨水污染的条件是:_________________;被墨水污染的第一个方程是:___________.
三、解答题
13.2022年北京冬奥会和冬残奥会的吉祥物“冰墩墩”和“雪容融”深受国内外广大朋友的喜爱,北京奥组委官方也推出了许多与吉祥物相关的商品,其中有型冰墩墩和型雪容融两种商品.已知购买1个型商品和1个型商品共需要220元,购买3个型商吕和2个型商品共需要560元,求每个型商品的售价.
14.根据市场调查,某厂某种消毒液的大瓶装(500g) 和小瓶装(250g) 两种产品的销售数量(按瓶计算)比为2:5.该厂每天生产这种消毒液22.5吨,这些消毒液应分装大、小瓶两种产品各多少瓶?
15.如图,在的方格内,填写了一些代数式和数.
(1)在图1中各行、各列及对角线上三个数之和都相等,请你求出,的值;
(2)把满足(1)的其它6个数填入图2中的方格内.
16.5月19日是“中国旅游日”,为拓宽学生视野,某校组织去井冈山开展研学旅行活动.在此次活动中,小明、小亮等同学随家长一同到某游乐园游玩.已知成人票每张35元,学生票按成人票五折优惠.他们一共12人,门票共需350元.
(1)小明他们一共去了几个成人,几个学生?
(2)如果团体票(16人或16人以上)按成人票六折优惠,请你帮助小明算一算,用哪种方式购票更省钱?
17.如果一个自然数N的个位数字不为0,且能分解成A×B,其中A与B都是两位数,A的十位数字比B的十位数字大2,A、B的个位数字之和为10,则称数N为“美好数”,并把数N分解成的过程,称为“美好分解”.例如:∵,61的十位数字比49的十位数字大2,且61、49的个位数字之和为10,∴2989是“美好数”;又如:∵,35的十位数字比19的十位数字大2,但个位数字之和不等于10,∴605不是“美好数”.
(1)判断525,1148是否是“美好数”?并说明理由;
(2)把一个大于4000的四位“美好数”N进行“美好分解”,即分解成,A的各个数位数字之和的2倍与B的各个数位数字之和的和能被7整除,求出所有满足条件的N.
18.如图,在数轴上有A,B两点,其中点A在点B的左侧,已知点B对应的数为4,点A对应的数为a.
(1)若,则线段的长为______(直接写出结果);
(2)若点C在射线上(不与A,B重合),且,求点C对应的数;(结果用含a的式子表示)
(3)若点M在线段之间,点N在点A的左侧(M、N均不与A、B重合),且,当,时,求a的值。
参考答案
1.C
2.A
3.B
4.B
5.A
6.D
7.B
8.B
9.
10.
11.40
12.同样的空调每台降价400元;x+y=5500
13.120元
14.这些消毒液应该分装20000大瓶,50000小瓶
15.(1)解:由已知条件可得,
解得:.
(2)解:如图所示:
16.(1)
解:设成人有x人,学生有y人.
由题意得:
解得:
答:小明他们一共去了8个成人,4个学生.
(2)
解:如果按团体票购买,按16人计算,共需费用为35×0.6×16=336元.
∵336<350,
∴购买团体票更省钱.
17.(1)∵.35的十位数字比15的十位数字大2.个位数学之和等于10
∴525是“美好数”;
∵.41的十位数字比28的十位数字大2,但个位数字之和不等于10
∴1148不是“美好数”.
(2)∵N为大于4000的四位“美好数”
∴设.
其中,x,y为整数
由题意得被7整除
即为整数
∴为整数
∵
∴
∴或21
即或18.
①当时
∵.且x,y为整数
∴或
∴或
∴或556
②当时
∵,且x,y为整数
∴
∴
∴
综上所述:或5561或7081.
18.(1)
解:∵
=-5,
∴AB=4-(-5)=4+5=9,
故答案为:9.
(2)
解:设点C对应的数字为x,
①点C在A,B之间时,
∵2AC-3BC=6,
∴2(x-a)-3(4-x)=6.
化简得:5x=18+2a.
∴x=.
②点C在B点的右侧时,
∵2AC-3BC=6,
∴2(x-a)-3(x-4)=6.
化简得:-x=-6+2a.
∴x=6-2a.
综上,点C对应的数为或6-2a.
(3)
解:设点M对应的数字为m,点N对应的数字为n,
由题意得:AM=m-a,AN=a-n,BM=4-m,BN=4-n,
∵AM-BM=2,
∴(m-a)-(4-m)=2.
∴2m-a=6①.
∵当=3时,BN=6BM,
∴=3,4-n=6(4-m).
∴m+3n=4a②,
6m-n=20③,
③×3+②得:19m=60+4a④,
将④代入①得:2×-a=6.
∴a=.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)