中小学教育资源及组卷应用平台
北师大版七年级数学上册第五章《一元一次方程》单元练习题(含答案)
一、单选题
1.若是方程的解,则a的值是( )
A.1 B.1 C.2 D.—
2.方程的解是( )
A.方程有唯一解 B.方程有唯一解
C.当方程有唯一解 D.当时方程有无数多个解
3.解方程,以下去括号正确的是( )
A. B. C. D.
4.小亮在解方程时,由于粗心,错把看成了,结果解得,则的值为( )
A. B. C. D.
5.下列方程中,解是的是( )
A. B.
C. D.
6.疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1916元,求其他两个年级的捐款数若设七年级捐款数为x元,则可列方程为( )
A. B.
C. D.
7.解方程,下列去分母变形正确的是( )
A. B.
C. D.
8.对于两个不相等的有理数a,b,我们规定符号min{a,b}表示a、b两数中较小的数,例如min{2,-4}=-4,则方程min{x,-x}=3x+4的解为( )
A.x=-1 B.x=-2 C.x=-1或x=-2 D.x=1或x=2
9.已知下列两个应用题:
①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?
②甲乙两人从相距20km的两地同时出发,背向而行,甲的速度是4km/h,乙的速度是6km/h,问经过几小时后两人相距60km?
其中可以用方程4x+6x+20=60表述题目中数量关系的应用题是( )
A.① B.② C.①② D.①②都不对
10.在做科学实验时,老师将第一个量筒中的水全部倒入第二个量筒中,如图所示,根据图中给出的信息,得到的正确方程是( ).
A.π×()2×x=π×()2×(x+4) B.π×92×x=π×92×(x+4)
C.π×()2×x=π×()2×(x-4) D.π×92×x=π×92×(x-4)
11.下列运用等式的性质对等式进行的变形中,错误的是( )
A.若,则 B.若,则
C.若,则 D.若,则
12.我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”意思是现有几个人共买一件物品,每人出8钱.多出3钱;每人出7钱,差4钱.问人数,物价各是多少?若设共有人,物价是钱,则下列方程正确的是( )
A. B.
C. D.
二、填空题
13.有一个一元一次方程:,其中“■”表示一个被污染的常数.答案注明方程的解是,于是这个被污染的常数是______.
14.某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打________折.
15.关于x的方程的解是正整数,则整数k可以取的值是__________.
16.已知m为非负整数,若关于x的方程mx=2-x的解为整数,则m的值为________.
17.关于x的一元一次方程的解是正整数,整数k的值是____________.
18.已知某铁路桥长1600米.现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用90秒,整列火车完全在桥上的时间是70秒.则这列火车长______米.
三、解答题
19.解方程:
(1); (2).
20.解方程
(1) (2)
21.已知关于的一元一次方程的解为,那么关于的一元一次方程的解=______.
22.以下是圆圆解方程=1的解答过程.
解:去分母,得3(x+1)﹣2(x﹣3)=1.
去括号,得3x+1﹣2x+3=1.
移项,合并同类项,得x=﹣3.
圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.
23.如果方程 的解与方程 的解相同,求式子 的值.
24.问题情境:在高邮高铁站上车的小明发现:坐在匀速行驶动车上经过一座大桥时,他从刚上桥到离桥共需要150秒;而从动车车尾上桥开始到车头离桥结束,整列动车完全在挢上的时间是148秒.已知该列动车长为120米,求动车经过的这座大桥的长度.
合作探究:
(1)请补全下列探究过程:小明的思路是设这座大桥的长度为x米,则坐在动车上的小明从刚上桥到离桥的路程为x米,所以动车的平均速度可表示为 米/秒;从动车车尾上桥开始到车头离桥结束的路程为(x﹣120)米,所以动车的平均速度还可以表示为 米/秒.再根据火车的平均速度不变,可列方程 .
(2)小颖认为:也可以设动车的平均速度为v米/秒,列出方程解决问题.请你按照小颖的思路求动车经过的这座大桥的长度.
25.某商店购进甲、乙两种型号的节能灯共100只,购进100只节能灯的进货款恰好为2600元,这两种节能灯的进价、预售价如下表:(利润=售价-进价)
型号 进价(元/只) 预售价(元/只)
甲型号 20 25
乙型号 35 40
(1)求该商店购进甲、乙两种型号的节能灯各多少只?
(2)在实际销售过程中,商店按预售价将购进的甲型号节能灯全部售出,购进的乙型号节能灯部分售出后,决定将乙型号节能灯打九折销售,全部售完后,两种节能灯共获得利润380元,求乙型号节能灯按预售价售出了多少只?
参考答案
1.A2.B3.D4.B5.C6.A7.A8.B9.C10.A11.C12.D
13.9
14.八
15.3
16.0或1##1或0
17.1或-1
18.200
19.(1)解:
去括号:
移项合并同类项:
系数化为1:.
(2)解:
等式两边同时乘以12,去分母:
去括号:
移项合并同类项:
系数化为1:.
20.(1)解:
去括号:
移项合并同类项得:
系数化为1得:x=
(2) = 1
去分母得:3(3x+1)-(5x-3)= 6
去括号得:9x+3 5x+3= 6
移项,合并同类项得:4x= 12
系数化为1得:x= 3
21.解:根据题意可得:
对原方程进行变形:
,
,
,
再把代入上式得出:,
故答案为:.
22.解:圆圆的解答过程有错误,
正确的解答过程如下:
3(x+1)﹣2(x﹣3)=6.
去括号,得3x+3﹣2x+6=6.
移项,合并同类项,得x=﹣3.
23.
将代入方程
40-(3a+1)=60+2a-1,
解得a=-4.
a2-a+1=(-4)2-(-4)+1=21.
24.解:(1)设这座大桥的长度为x米,则坐在动车上的小明从刚上桥到离桥的路程为x米,所以动车的平均速度可表示为.
从动车车尾上桥开始到车头离桥结束的路程为(x﹣120)米,所以动车的平均速度还可以表示为.
火车的平均速度不变,可列方程:.
故答案为:;;.
(2)设动车的平均速度为v米/秒.
∴150v=148v+120.
解得:v=60m/s.
∴动车经过的这座大桥的长度:150×60=9000m.
25.(1)
解:设该商店购进甲种型号的节能灯只,则可以购进乙种型号的节能灯只,
由题意可得:,
解得:,
(只,
答:该商店购进甲种型号的节能灯60只,可以购进乙种型号的节能灯40只;
(2)
解:设乙型节能灯按预售价售出的数量是只,
由题意得,
解得:,
答:乙型节能灯按预售价售出的数量是10只.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)