专题10 线段中的动态问题专项提升(精讲)【备考期中期末】2022-2023学年七年级上学期高频考点+专项提升精讲精练(浙教版)(解析卷)

文档属性

名称 专题10 线段中的动态问题专项提升(精讲)【备考期中期末】2022-2023学年七年级上学期高频考点+专项提升精讲精练(浙教版)(解析卷)
格式 zip
文件大小 5.0MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2022-12-08 20:11:46

文档简介

中小学教育资源及组卷应用平台
专题10 线段中的动态问题 专项提升(精讲)
线段有关的动点问题(数轴动点题)是浙教版七年级上学期压轴题。本本专题主要介绍线段相关的动点问题(与中点、和差倍分结合的动点问题;存在性(探究性)问题;阅读理解(新定义)等)。
【知识储备】
1.在与线段长度有关的问题中,常常会涉及线段较多且关系较复杂的问题,而且题中的数据无法直接利用,常设列方程;
2.线段等量代换模型:
若,则,即
3.定和型中点模型:
若,分别是,的中点,则
4.线段的动点问题解题步骤:
1)设入未知量t表示动点运动的距离;
2)利用和差(倍分)关系表示所需的线段;
3)根据题设条件建立方程求解;
4)观察运动位置可能的情况去计算其他结果。
高频考点1. 线段中点有关的动点问题
例1.(2022·广东·七年级期中)如图,已知数轴上点表示的数为8,是数轴上一点,且,动点从点出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为秒:
(1)写出数轴上点表示的数为______,点表示的数为______ (用含的代数式表示);
(2)动点从点出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点、同时出发,问点运动多少秒时追上点?(3)若为的中点,为的中点,点在运动的过程中,线段的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段的长.
【答案】(1)-6,;(2)点运动7秒时追上点;(3)线段的长度不发生变化,其值为7
【分析】(1)根据点表示的数和AB的长度即可求解;(2)根据题意列出方程,求解即可;(3)分类讨论即可:①当点在点、两点之间运动时,②当点运动到点的左侧时,根据中点的定义即可求解.
【详解】(1)解:∵数轴上点表示的数为8,且,
∴点表示的数为,点P表示的数为,故答案为:-6,;
(2)设点、同时出发,点运动时间秒追上,依题意得,,解得,
∴点运动7秒时追上点;
(3)线段的长度没有发生变化都等于7;理由如下:
①当点在点、两点之间运动时:

②当点运动到点的左侧时:

∴线段的长度不发生变化,其值为7.
【点睛】本题考查数轴上的动点问题,掌握中点的定义、一元一次方程的应用是解题的关键.
变式1.(2022·安徽合肥·七年级期末)线段AB=10,AB上有一动点C,以每秒2个单位的速度,按A一B一A的路径从点A出发,到达点B后又返回到点A停止,设运动时间为t(0≤t≤10)秒.
(1)当t=6时,AC=   .(2)用含t的式子表示线段AC的长;当0≤t≤5时,AC=   ;当5<t≤10时,AC=   .(3)M是AC的中点,N是BC的中点,在点C运动的过程中,MN的长度是否发生变化?若不变化,求出MN的长,
【答案】(1)8(2),;(3)的长度不变,长度为5
【分析】(1)根据点的运动速度和可得答案;(2)根据路程速度时间可求的长度;
(3)分情况讨论,再根据线段中点的定义可得答案.
(1)当时,动点运动了个单位,
,..故答案为:8;
(2)当时,; 当时,
.故答案为:,;
(3)当时,;
当时,;
故的长度不变,长度为5.
【点睛】此题考查解一元一次方程、列一元一次方程解应用题、数轴上的动点问题的求解等知识与方法,解题的关键是弄清点的运动方向、速度,并且用代数式表示运动的距离.
例2.(2022·重庆一中)如图,在数轴上点表示的数为,点表示的数为,点表示的数为,是最大的负整数,且,满足.点从点出发以每秒3个单位长度的速度向左运动,到达点后立刻返回到点,到达点后再返回到点并停止.
(1)_____,_____,_____.(2)点从点离开后,在点第二次到达点的过程中,经过秒钟,,求的值.(3)点从点出发的同时,数轴上的动点,分别从点和点同时出发,相向而行,速度分别为每秒4个单位长度和每秒5个单位长度,假设秒钟时,、、三点中恰好有一个点是另外两个点的中点,请直接写出所有满足条件的的值.
【答案】(1),,;(2)或或或;(3),1,,8,12
【分析】(1)根据b为最大的负整数可得出b的值,再根据绝对值以及偶次方的非负性即可得出a、c的值;(2)由题意知,依次求出PC、PB的长,再进行分类讨论即可:当从到时,当从到时,当从到时,三种情况分类讨论.(3)以点从为PN中点时,当0【详解】解:(1)∵是最大的负整数,且,满足,
∴b=-1,a+3=0,c-9=0,∴a=-3,c=9.故答案为:-3;-1;9.
(2)由题意知,此过程中,当点P在AB上时.
∴PA+PB=AB=b-a=-1-(-3)=2.∴.
又∵BC=c-b=9-(-1)=10.∴PB=PC-BC=11-10=1.
当从到时,如图所示:∵PB=1,可以列方程为:3x=1,解得:x=1;
当从到时,分两种情况讨论:①当P在线段AB之间时,如图所示:
可以列方程为:3x=3,解得:x=1,
②当P在线段BC之间时,如图所示:
∵PA+PB+PC=13,AB=2,BC=10,∵PB+PC=10∴PA=13-10=3,
∴PB=PA-AB=3-2=1,可列方程为:3x=5,解得:.
当从到时,如图所示:
可列方程为:3x=23,解得:.综上所述,或或或.
(3)当点从为PN中点时,当0(-1-3t)+(9-5t)=2(-3+4t),解得t= (舍去).
当≤t≤时,点P从A返回向B运动.此时,P=-3+3(t-)=3t-5.3t-5+9-5t=2(-3+4t),解得t=1.
当P为M中点时,t>.(9-5t)+(-3+4t)=2(3t-5),解得t= .
当点N为PM中点时,t>.(-3+4t)+(3t-5)=2(9-5t),解得t=.
综上所述,t的值为1, 或.
【点睛】本题主要考查了数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.
变式2.(2022·河南·七年级期中)如图①,已知线段,点C为线段AB上的一点,点D,E分别是AC和BC的中点.
(1)若,则DE的长为_____________;(2)若,求DE的长;(3)如图②,动点P,Q分别从A,B两点同时出发,相向而行,点P以每秒3个单位长度的速度沿线段AB向右匀速运动,点Q以点P速度的两倍沿线段AB向左匀速运动,设运动时间为t秒,问当t为多少时,P,Q之间的距离为6?
【答案】(1)6;(2)6;(3)或2
【分析】(1)根据图形,由AB= 12,AC=4得出BC= 8再根据点D,E分别时AC和BC中点,得出DC,EC,再根据线段的和求出DE,(2)根据图形,由AB= 12,BC=m得出AC=12-m 再根据点D,E分别时AC和BC中点,得出DC,EC,再根据线段的和求出DE,(3)用含t的式子表示AP,BQ,再画出两种图形,根据线段的和等于AB,得到两个一元一次方程,即可求出.
【详解】解:如图
(1)∵AB= 12,AC=4 ∴BC= 8 ∵点D,E分别时AC和BC中点,
∴DC=2,BC=EC=4∴DE=DC+CE=6
(2)∵AB= 12, BC= m∴AC=12-m ∵点D, E分别时 AC和BC中点
∴DC=6-m,BC=EC=∴DE=DC+CE=6
(3)由题意得,如图所示,

AP=3t,BQ= 6t∴AP+PQ+BQ=12或AP+ BQ- PQ= 12
∴3t+6+ 6t= 12或3t + 6t- 6= 12解得t=或t= 2
故当t=或t= 2时,P,Q之间的距离为6.
【点睛】本题考查了线段的中点,线段的和差倍分,解题的关键是根据题意画出图形,得出线段之间的关系式.
高频考点2. 线段和差倍分关系中的动点问题
例1.(2022·贵州黔西·七年级期末)已知点在线段上,,点、在直线上,点在点的左侧.若,,线段在线段上移动.
(1)如图1,当为中点时,求的长;
(2)点(异于,,点)在线段上,,,求的长.
【答案】(1)7(2)3或5
【分析】(1)根据,,可求得,,根据中点的定义求出BE,由线段的和差即可得到AD的长.(2)点F(异于A,B,C点)在线段AB上,,,确定点F是BC的中点,即可求出AD的长.
(1),,,,
如图1,
为中点,,
,∴,
∴,
(2)Ⅰ、当点在点的左侧,如图2,

∵,,点是的中点,
∴,∴,∴,
∵,故图2(b)这种情况求不出;
Ⅱ、如图3,当点在点的右侧,

,,∴,
∴,.
∵,故图3(b)这种情况求不出;
综上所述:的长为3或5.
【点睛】本题考查了两点间的距离,熟知各线段之间的和、差及倍数关系是解答的关键.本题较难,需要想清楚各种情况是否存在.
变式1.(2022·陕西岐山县·七年级期中)如图,点,在数轴上所对应的数分别为-5,7(单位长度为),是,间一点,,两点分别从点,出发,以,的速度沿直线向左运动(点在线段上,点在线段上),运动的时间为.
(1)______.(2)若点,运动到任一时刻时,总有,请求出的长.
(3)在(2)的条件下,是数轴上一点,且,求的长.
【答案】(1)12;(2)4cm;(3)或
【分析】(1)由两点间的距离,即可求解;(2)由线段的和差关系可求解;
(3)由题设画出图示,分两种情况根据:当点在线段上时,由AQ﹣BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ与AB的关系,当点在的延长线上时,可得.
【详解】解:(1)∵A、B两点对应的数分别为-5,7,
∴线段AB的长度为:7-(-5)=12;故答案为:12
(2)根据点,的运动速度知.
因为,所以,即,所以.
(3)分两种情况:如图,当点在线段上时,
因为,所以.
又因为,所以,所以;
如图,当点在的延长线上时,,
综上所述,的长为或.
【点睛】本题考查了数轴的运用和绝对值的运用,解题的关键是掌握数轴上两点之间距离的表示方法,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.
例2.(2022·四川成都·七年级期末)已知线段AB=m(m为常数),点C为直线AB上一点(不与点A、B重合),点M、N分别在线段BC、AC上,且满足CN=3AN,CM=3BM.
(1)如图,当点C恰好在线段AB中点,且m=8时,则MN=______;
(2) 若点C在点A左侧,同时点M在线段AB上(不与端点重合),请判断CN+2AM -2MN的值是否与m有关?并说明理由.(3) 若点C是直线AB上一点(不与点A、B重合),同时点M在线段AB上(不与端点重合),求MN长度 (用含m的代数式表示).
【答案】(1)6;(2) 无关,理由见解析;(3)m.
【分析】(1)根据中点可得到AC、BC的长,再根据CN=3AN,CM=3BM,可计算出CN、CM,最后根据线段的和差关系进行计算即可;
(2)根据线段之间的关系及CN=3AN,CM=3BM,分别表示出CN、AM及MN,再进行化简即可;
(3)分情况讨论,画出图形,根据线段之间的关系计算即可.
【详解】解:(1)∵点C恰好在线段AB中点,且AB=m=8,
∴AC=BC=AB=4,∵CN=3AN,CM=3BM,∴CN=AC,CM=BC,
∴CN=3,CM=3,∴MN=CN+CM=3+3=6;
(2)若C在A的左边,如图所示,
∵CN=3AN,CM=3BM,∴MN=CM-CN=3BM-3AN,
∴AM=MN-AN=3BM-3AN-AN=3BM-4AN,
∴CN +2AM-2MN=3AN+2(3BM-4AN)-2(3BM-3AN)=AN,
∴CN +2AM-2MN的值与m无关;
(3)①当点C在线段AB上时,如图所示,
∵CN=3AN,CM=3BM ∴CN=AC,CM=BC,
∴MN=CM+CN=BC+AC=(BC+AC)=AB=m;
②当点C在点A的左边,如图所示,
∵CN=3AN,CM=3BM ∴CN=AC,BM=BC,
∴MN=BC-CN-BM=BC-AC-BC =(BC-AC)=AB=m;
③当点C在点B的右边,如图所示:
∵CN=3AN,CM=3BM∴AN=AC,CM=BC,
∴MN=AC-AN-CM=AC-AC-BC =(AC-BC)=AB=m,
综上所述,MN的长度为m.
【点睛】本题考查线段的计算,分情况讨论,正确找出线段之间的关系是解题的关键.
变式2.(2022·四川成都·七年级期末)如图,已知点C在线段AB上,AB=20,BC=AC,点D,E在射线AB上,点D在点E的左侧.
(1)DE在线段AB上,当E为BC中点时,求CE的长;
(2)在(1)的条件下,点F在线段AB上,CF=3,求EF的长;
(3)若AB=2DE,线段DE在射线AB上移动,且满足关系式4BE=3(AD+CE),求的值.
【答案】(1)CE=2.5;(2)EF的长为0.5或5.5;(3).
【分析】(1)根据AC=20,BC=AC可得BC的长度,再根据线段的中点可得答案;
(2)分两种情况:当点F在点E的右侧或当点F在点E的左侧,再根据线段的中点计算即可;
(3)根据DE的位置分情况计算即可.
(1)解:∵AB=20,BC=AC,∴BC=5,AC=15,
∵E为BC中点,∴CE=2.5;
(2)解:当点F在点E的右侧,如图,
EF=CF-CE=3-2.5=0.5,
当点F在点E的左侧,如图,
EF=CF+CE=3+2.5=5.5,
综上:EF的长为0.5或5.5;
(3)解:∵BC=AC,AB=2DE,满足关系式4BE=3(AD+CE),设CE=x,BC=5,AC=15,DE=10,
①当DE在线段AC上时,如图,
则AD=15-x-10=5-x,BE=5+x,
∵4BE=3(AD+CE),即4(5+x)=3(5-x+x),解得x=-1.25,不合题意,舍去;
②当点C在DE之间时,如图,
∴AD=15+x-10=5+x,BE=5-x,
∵4BE=3(AD+CE),即4(5-x)=3(5+x+x),
解得x=0.5,∴CD=10-0.5=9.5 ∴;
③线段CB在线段DE上时,如图,
则AD=15+x-10=5+x,BE=x-5,即4(x-5)=3(5+x+x),解得x=-17.5,不合题意,舍去;
④当D在CB之间时,如图,
AD=15+x-10=5+x,BE=x-5,即4(x-5)=3(5+x+x),解得x=-17.5,不合题意,舍去;
⑤当D在B的右边时,如图,
AD=15+x-10=5+x,BE=x-5,即4(x-5)=3(5+x+x),解得x=-17.5,不合题意,舍去.
综上,.
【点睛】本题考查了两点间的距离,熟练掌握线段中点的定义和线段的和差是解题关键,注意分情况计算.
高频考点3. 线段上动点问题中的存在性(探究性)问题
例1.(2022·浙江·九年级专题练习)如图,点是定长线段上一点,、两点分别从点、出发以1厘米/秒,2厘米/秒的速度沿直线向左运动(点在线段上,点在线段上).
(1)若点、运动到任一时刻时,总有,请说明点在线段上的位置;
(2)在(1)的条件下,点是直线上一点,且,求的值;
(3)在(1)的条件下,若点、运动5秒后,恰好有,此时点停止运动,点继续运动(点在线段上),点、分别是、的中点,下列结论:①的值不变;②的值不变.可以说明,只有一个结论是正确的,请你找出正确的结论并求值.
【答案】(1)点P在线段AB的处;(2)或;(3)结论②的值不变正确,.
【分析】(1)设运动时间为t秒,用含t的代数式可表示出线段PD、AC长,根据,可知点在线段上的位置;(2)由可知,当点Q在线段AB上时,等量代换可得,再结合可得的值;当点Q在线段AB的延长线上时,可得,易得的值.(3)点停止运动时,,可求得CM与AB的数量关系,则PM与PN的值可以含AB的式子来表示,可得MN与AB的数量关系,易知的值.
【详解】解:(1)设运动时间为t秒,则,
由得,即
,,,即所以点P在线段AB的处;
(2)①如图,当点Q在线段AB上时,由可知,
②如图,当点Q在线段AB的延长线上时,

综合上述,的值为或;
(3)②的值不变. 由点、运动5秒可得,
如图,当点M、N在点P同侧时,
点停止运动时,,点、分别是、的中点,
当点C停止运动,点D继续运动时,MN的值不变,所以;
如图,当点M、N在点P异侧时,
点停止运动时,,点、分别是、的中点,
当点C停止运动,点D继续运动时,MN的值不变,所以;
所以②的值不变正确,.
【点睛】本题考查了线段的相关计算,利用线段中点性质转化线段之间的和差倍分关系是解题的关键.
变式1.(2022·湖北武汉·七年级期末)已知线段AB=m,CD=n,线段CD在直线AB上运动(A在B的左侧,C在D的左侧),且m,n满足|m-12|+(n-4)2=0.
(1)m=  ,n=  ;
(2)点D与点B重合时,线段CD以2个单位长度/秒的速度向左运动.
①如图1,点C在线段AB上,若M是线段AC的中点,N是线段BD的中点,求线段MN的长;
②P是直线AB上A点左侧一点,线段CD运动的同时,点F从点P出发以3个单位/秒的向右运动,点E是线段BC的中点,若点F与点C相遇1秒后与点E相遇.试探索整个运动过程中,FC-5DE是否为定值,若是,请求出该定值;若不是,请说明理由.
【答案】(1)m=12,n= 4; (2)① MN=8,②在整个运动的过程中,FC-5 DE的值为定值,且定值为0.
【分析】(1)由绝对值和平方的非负性,即可求出m、n的值;
(2)①由题意,则MN=CM+CD+DN,根据线段中点的定义,即可得到答案;
②设PA=a,则PC=8+a,PE=10+a,然后列出方程,求出a=2,然后分情况进行分析,求出每一种的值,即可得到答案.
【详解】解:(1)∵|m-12|+(n-4)2=0,
∴m-12=0,n-4=0,∴m=12,n=4;故答案为:12;4.
(2)由题意,①∵AB=12,CD=4,
∵M是线段AC的中点,N是线段BD的中点
∴AM=CM=AC ,DN=BN=BD
∴MN=CM+CD+DN=AC +CD+BD=AC +CD+BD+CD
=(AC +CD+BD)+CD=(AB +CD)=8;
②如图,设PA=a,则PC=8+a,PE=10+a,
依题意有:解得:a=2
在整个运动的过程中:BD=2t,BC=4+2t,
∵E是线段BC的中点∴CE= BE=BC=2+t;
Ⅰ.如图1,F,C相遇,即t=2时
F,C重合,D,E重合,则FC=0,DE=0 ∴FC-5 DE =0;
Ⅱ.如图2,F,C相遇前,即t<2时
FC =10-5t,DE =BE-BD=2+t-2t=2-t ∴FC-5 DE =10-5t -5(2-t)=0;
Ⅲ.如图3,F,C相遇后,即t>2时
FC =5t-10,DE = BD - BE=2t –(2+t)= t-2 ∴FC-5 DE =5t-10 -5(t-2)=0;
综合上述:在整个运动的过程中,FC5 DE的值为定值,且定值为0.
【点睛】本题考查了线段中点的定义,线段的和差倍分的关系,一元一次方程的应用,绝对值的非负性等知识,解题的关键是熟练掌握线段的中点定义进行解题,注意运用分类讨论的思想进行分析.
例2.(2022·广西桂林·七年级期末)如图,在直线AB上,线段,动点P从A出发,以每秒2个单位长度的速度在直线AB上运动.M为AP的中点,N为BP的中点,设点P的运动时间为t秒.
(1)若点P在线段AB上的运动,当时, ;
(2)若点P在射线AB上的运动,当时,求点P的运动时间t的值;
(3)当点P在线段AB的反向延长线上运动时,线段AB、PM、PN有怎样的数量关系?请写出你的结论,并说明你的理由.
【答案】(1)(2)8或24(3),见解析
【分析】(1)根据题中条件直接计算即可求解;
(2)分点在线段上运动和线段的延长线上运动进行讨论,从而求解;
(3)先将和表示出来,再求出线段、、之间的数量关系.
(1)解:∵ M为AP的中点,,∴ ,
∵线段,N为BP的中点,∴.故答案是:2;
(2)解:①当点P在线段AB上,时,如图,
∵,,∴,解得:.
②当点P在线段AB的延长线上,时,如图,
∵,,∴,解得:.
综上所述,当时,点P的运动时间t的值为8或24.
(3)解:当点P在线段AB的反向延长线上时,,
∵,,
∴.
【点睛】本题主要考查了点的运动和线段之间的关系,熟练掌握几何的基础知识是解答本题的关键.
变式2.(2022·湖北青山区·七年级期中)已知线段AB=m,CD=n,线段CD在直线AB上运动(A在B的左侧,C在D的左侧),且m,n满足|m-12|+(n-4)2=0.(1)m=  ,n=  ;
(2)点D与点B重合时,线段CD以2个单位长度/秒的速度向左运动.
①如图1,点C在线段AB上,若M是线段AC的中点,N是线段BD的中点,求线段MN的长;
②P是直线AB上A点左侧一点,线段CD运动的同时,点F从点P出发以3个单位/秒的向右运动,点E是线段BC的中点,若点F与点C相遇1秒后与点E相遇.试探索整个运动过程中,FC-5DE是否为定值,若是,请求出该定值;若不是,请说明理由.
【答案】(1)m=12,n= 4; (2)① MN=8,②在整个运动的过程中,FC-5 DE的值为定值,且定值为0.
【分析】(1)由绝对值和平方的非负性,即可求出m、n的值;(2)①由题意,则MN=CM+CD+DN,根据线段中点的定义,即可得到答案;②设PA=a,则PC=8+a,PE=10+a,然后列出方程,求出a=2,然后分情况进行分析,求出每一种的值,即可得到答案.
【详解】解:(1)∵|m-12|+(n-4)2=0,∴m-12=0,n-4=0,∴m=12,n=4;故答案为:12;4.
(2)由题意,①∵AB=12,CD=4,
∵M是线段AC的中点,N是线段BD的中点∴AM=CM=AC ,DN=BN=BD
∴MN=CM+CD+DN=AC+CD+BD=AC +CD+BD+CD=(AC +CD+BD)+CD=(AB +CD)=8;
②如图,设PA=a,则PC=8+a,PE=10+a,
依题意有:解得:a=2
在整个运动的过程中:BD=2t,BC=4+2t,
∵E是线段BC的中点∴CE= BE=BC=2+t;
Ⅰ.如图1,F,C相遇,即t=2时
F,C重合,D,E重合,则FC=0,DE=0∴FC-5 DE =0;
Ⅱ.如图2,F,C相遇前,即t<2时
FC =10-5t,DE =BE-BD=2+t-2t=2-t∴FC-5 DE =10-5t -5(2-t)=0;
Ⅲ.如图3,F,C相遇后,即t>2时
FC =5t-10,DE = BD - BE=2t –(2+t)= t-2∴FC-5 DE =5t-10 -5(t-2)=0;
综合上述:在整个运动的过程中,FC5 DE的值为定值,且定值为0.
【点睛】本题考查了线段中点的定义,线段的和差倍分的关系,一元一次方程的应用,绝对值的非负性等知识,解题的关键是熟练掌握线段的中点定义进行解题,注意运用分类讨论的思想进行分析.
高频考点4. 阅读理解型(新定义)问题
例1.(2022·浙江·七年级课时练习)(理解新知)
如图①,点M在线段AB上,图中共有三条线段AB、AM和BM,若其中有一条线段的长度是另外一条线段长度的2倍,则称点M是线段AB的“奇妙点”,
(1)线段的中点 这条线段的“奇妙点”(填“是”或“不是”)
(2)(初步应用)
如图②,若,点N是线段CD的“奇妙点”,则 ;
(3)(解决问题)
如图③,已知,动点P从点A出发,以速度沿AB向点B匀速移动,点从点B出发,以的速度沿BA向点A匀速移动,点P、同时出发,当其中一点到达终点时,运动停止.设移动的时间为 t,请求出 为何值时,A、P、三点中其中一点恰好是另外两点为端点的线段的“奇妙点”.
【答案】(1)是;(2)8或12或16;(3)当点P为AQ的“奇妙点”时,或4或;当点Q为AP的“奇妙点”时,或6或.
【分析】(1)根据线段的中点平分线段长的性质,以及题目中所给的“奇妙点”的定义,进行判断即可.
(2)由“奇妙点”定义,此题分为三种情况,情况1:,即N为CD的中点;情况2:,即N为靠近C点的三等分点;情况3:,即N为靠近D点的三等分点,根据以上三种情况,分别求出CN的长度.
(3)由题意可知,A不可能是“奇妙点”,故此题分两大类情况,情况1:当P、Q未相遇之前,P是 “奇妙点”时,根据第(2)题的思路,又可以分为3种情况,根据每种情况,利用线段长度关系列方程,分别求出对应时间;情况2:当P、Q相遇之后,Q是“奇妙点”时,同样根据第(2)题的思路,又分成3种情况讨论,利用线段长度关系列方程,求出每种情况对应的时间.
【详解】(1)由线段中点的性质可知:被中点平分的两条线段长度是线段总长的一半,
根据“奇妙点”定义可知:线段的中点是“奇妙点”.
故答案是:是;
(2)是线段CD的“奇妙点”
根据定义,此题共分为三种情况.
当,即N为CD的中点时,有CN=12cm.
当,即N为靠近C点的三等分点时,有CN=8cm.
当,即N为靠近D点的三等分点时,有CN=16cm.
故答案为:8或12或16.
(3)解:由题意可知,A点不可能是“奇妙点”,故P或Q点是“奇妙点”.
t秒后,,.
当P点是“奇妙点”时,.
由“奇妙点”定义可分三种情况.
当时,有 解得
当时,有 解得
当时,有 解得
当Q点是“奇妙点”时,.
当时,有 解得
当时,有 解得
当时,有 解得
综上所述:当点P为AQ的“奇妙点”时,或4或;
当点Q为AP的“奇妙点”时,或6或.
【点睛】本题属于新定义题,主要是考察了线段中点、线段长度、列方程等知识点,本题讨论情况较多,从侧面考察了数学中比较重要的分类讨论思想,根据题意,能够正确地进行分类讨论,把每一种情况列举完全,是解决该题的关键.
变式1.(2022·北京市第七中学七年级期中)如图1,点C把线段AB分成两条线段AC和BC,如果AC=2BC时,则称点C是线段AB的内二倍分割点;如图2,如果BC=2AC时,则称点C是线段BA的内二倍分割点.

例如:如图3,数轴上,点A、B、C、D分别表示数-1、2、1、0,则点C是线段AB的内二倍分割点;点D是线段BA内二倍分割点.
(1)如图4,M、N为数轴上两点,点M所表示的数为-2,点N所表示的数为7.MN的内二倍分割点表示的数是 ;NM的内二倍分割点表示的数是 .
(2)数轴上,点A所表示的数为-30,点B所表示的数为20.点P从点B出发,以2个单位每秒的速度沿数轴向左运动,设运动时间为t(t>0)秒.
①线段BP的长为 ;(用含t的式子表示)
②求当t为何值时,P、A、B三个点中恰有一个点为其余两点的内二倍分割点.
【答案】(1) 4 ;1;(2)①线段BP的长为 2t ;②当t为或或或75秒时,P、A、B中恰有一个点为其余两点的内二倍分割点.
【分析】(1)根据内二倍分割点的定义,找到MN的三等分点表示的数即可;
(2)①根据速度与路程的关系,可得BP=2t, ②分P为其余两点的内二倍分割点和A为其余两点的内二倍分割点两种情况,按照内二倍分割点的定义,列方程求解即可.
【详解】解:(1)MN的内二倍分割点就是MN的三等分点且距N近,MN=9,则MN的内二倍分割点在N的左侧,距N点3个单位,所以,表示的数为 4 ;同理,则NM的内二倍分割点在N的左侧,距N点6个单位,所以,表示的数为1;
(2)① 则线段BP的长为 2t.
② 当P在线段AB上时,有以下两种情况:
如果P是AB的内二倍分割点时,则AP=2BP,
所以50-2t = 2×2t,
解得t=;
如果P是BA的内二倍分割点时,则BP=2AP,
所以2t=2(50-2t),
解得t=;
当P在点A左侧时,有以下两种情况:
如果A是BP的内二倍分割点时,则BA=2PA,
所以50=2(2t-50)
解得t=;
如果A是PB的内二倍分割点时,则PA=2BA,
所以2t-50=2×50,
解得t=75;
综上所述:当t为或或或75秒时,P、A、B中恰有一个点为其余两点的内二倍分割点.
【点睛】本题考查了新定义内二倍分割点、速度与路程的关系和分类讨论的思想;准确理解定义,恰当的用速度与时间表示线段长,分类讨论,建立方程是解题的关键.
例2.(2022·河南宛城七年级期中)如图一,点在线段上,图中有三条线段、和,若其中一条线段的长度是另外一条线段长度的倍,则称点是线段的“巧点”.
(1)填空:线段的中点 这条线段的巧点(填“是”或“不是”或“不确定是”)
(问题解决)(2)如图二,点和在数轴上表示的数分别是和,点是线段的巧点,求点在数轴上表示的数。
(应用拓展)(3)在(2)的条件下,动点从点处,以每秒个单位的速度沿向点匀速运动,同时动点从点出发,以每秒个单位的速度沿向点匀速运动,当其中一点到达中点时,两个点运动同时停止,当、、三点中,其中一点恰好是另外两点为端点的线段的巧点时,直接写出运动时间的所有可能值.
【答案】(1)是;(2)10或0或20;(3) ;t=6;;t=12;;.
【分析】(1)根据新定义,结合中点把原线段分成两短段,满足原线段是短线段的2倍关系,进行判断即可;(2)由题意设C点表示的数为x,再根据新定义列出合适的方程即可;(3)根据题意先用t的代数式表示出线段AP,AQ,PQ,再根据新定义列出方程,得出合适的解即可求出t的值.
【解析】解:(1)因原线段是中点分成的短线段的2倍,所以线段的中点是这条线段的巧点,答案为:是;
(2)设C点表示的数为x,则AC=x+20,BC=40-x,AB=40+20=60,
根据“巧点”的定义可知:①当AB=2AC时,有60=2(x+20),解得,x=10;
②当BC=2AC时,有40-x=2(x+20),解得,x=0;
③当AC=2BC时,有x+20=2(40-x),解得,x=20.
综上,C点表示的数为10或0或20;
(3)由题意得,
(i)、若0≤t≤10时,点P为AQ的“巧点”,有
①当AQ=2AP时,60-4t=2×2t,解得,,
②当PQ=2AP时,60-6t=2×2t,解得,t=6;
③当AP=2PQ时,2t=2(60-6t),解得,;
综上,运动时间的所有可能值有;t=6;;
(ii)、若10<t≤15时,点Q为AP的“巧点”,有
①当AP=2AQ时,2t=2×(60-4t),解得,t=12;
②当PQ=2AQ时,6t-60=2×(60-4t),解得,;
③当AQ=2PQ时,60-4t=2(6t-60),解得,.
综上,运动时间的所有可能值有:t=12;;.
故,运动时间的所有可能值有:;t=6;;t=12;;.
【点睛】本题是新定义题,是数轴的综合题,主要考查数轴上的点与数的关系,数轴上两点间的距离,一元一次方程的应用,解题的关键是根据新定义列出方程并进行求解.
变式2.(2022·江苏淮安·七年级期末)【探索新知】
如图1,点在线段上,图中共有3条线段:、和,若其中有一条线段的长度是另一条线段长度的两倍,则称点是线段的“二倍点”.
(1)①一条线段的中点 这条线段的“二倍点”;(填“是”或“不是”)
②若线段,是线段的“二倍点”,则 (写出所有结果)
【深入研究】如图2,若线段,点从点的位置开始,以每秒2的速度向点运动,当点到达点时停止运动,运动的时间为秒.(2)问为何值时,点是线段的“二倍点”;
(3)同时点从点的位置开始,以每秒1的速度向点运动,并与点同时停止.请直接写出点是线段的“二倍点”时的值.
【答案】(1)①是;②10或或;(2)5或或;(3)8或或
【分析】(1)①可直接根据“二倍点”的定义进行判断;
②可分为三种情况进行讨论,分别求出BC的长度即可;
(2)用含t的代数式分别表示出线段AM、BM、AB,然后根据“二倍点”的意义,分类讨论得结果;
(3)用含t的代数式分别表示出线段AN、NM、AM,然后根据“二倍点”的意义,分类讨论.
【详解】解:(1)①因为线段的中点把该线段分成相等的两部分,
该线段等于2倍的中点一侧的线段长.∴一条线段的中点是这条线段的“二倍点”故答案为:是.
②∵,是线段的“二倍点”,
当时,;
当时,;
当时,;故答案为:10或或;
(2)当AM=2BM时,20-2t=2×2t,解得:t=;
当AB=2AM时,20=2×(20-2t),解得:t=5;
当BM=2AM时,2t=2×(20-2t),解得:t=;
答:t为或5或时,点M是线段AB的“二倍点”;
(3)当AN=2MN时,t=2[t-(20-2t)],解得:t=8;
当AM=2NM时,20-2t=2[t-(20-2t)],解得:t=;
当MN=2AM时,t-(20-2t)=2(20-2t),解得:t=;
答:t为或8或时,点M是线段AN的“二倍点”.
【点睛】本题考查了一元一次方程的解法、线段的和差等知识点,题目需根据“二倍点”的定义分类讨论,理解“二倍点”是解决本题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题10 线段中的动态问题 专项提升(精讲)
线段有关的动点问题(数轴动点题)是浙教版七年级上学期压轴题。本本专题主要介绍线段相关的动点问题(与中点、和差倍分结合的动点问题;存在性(探究性)问题;阅读理解(新定义)等)。
【知识储备】
1.在与线段长度有关的问题中,常常会涉及线段较多且关系较复杂的问题,而且题中的数据无法直接利用,常设列方程;
2.线段等量代换模型:
若,则,即
3.定和型中点模型:
若,分别是,的中点,则
4.线段的动点问题解题步骤:
1)设入未知量t表示动点运动的距离;
2)利用和差(倍分)关系表示所需的线段;
3)根据题设条件建立方程求解;
4)观察运动位置可能的情况去计算其他结果。
高频考点1. 线段中点有关的动点问题
例1.(2022·广东·七年级期中)如图,已知数轴上点表示的数为8,是数轴上一点,且,动点从点出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为秒:
(1)写出数轴上点表示的数为______,点表示的数为______ (用含的代数式表示);
(2)动点从点出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点、同时出发,问点运动多少秒时追上点?(3)若为的中点,为的中点,点在运动的过程中,线段的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段的长.
变式1.(2022·安徽合肥·七年级期末)线段AB=10,AB上有一动点C,以每秒2个单位的速度,按A一B一A的路径从点A出发,到达点B后又返回到点A停止,设运动时间为t(0≤t≤10)秒.
(1)当t=6时,AC=   .(2)用含t的式子表示线段AC的长;当0≤t≤5时,AC=   ;当5<t≤10时,AC=   .(3)M是AC的中点,N是BC的中点,在点C运动的过程中,MN的长度是否发生变化?若不变化,求出MN的长,
例2.(2022·重庆一中)如图,在数轴上点表示的数为,点表示的数为,点表示的数为,是最大的负整数,且,满足.点从点出发以每秒3个单位长度的速度向左运动,到达点后立刻返回到点,到达点后再返回到点并停止.
(1)_____,_____,_____.(2)点从点离开后,在点第二次到达点的过程中,经过秒钟,,求的值.(3)点从点出发的同时,数轴上的动点,分别从点和点同时出发,相向而行,速度分别为每秒4个单位长度和每秒5个单位长度,假设秒钟时,、、三点中恰好有一个点是另外两个点的中点,请直接写出所有满足条件的的值.
变式2.(2022·河南·七年级期中)如图①,已知线段,点C为线段AB上的一点,点D,E分别是AC和BC的中点.
(1)若,则DE的长为_____________;(2)若,求DE的长;(3)如图②,动点P,Q分别从A,B两点同时出发,相向而行,点P以每秒3个单位长度的速度沿线段AB向右匀速运动,点Q以点P速度的两倍沿线段AB向左匀速运动,设运动时间为t秒,问当t为多少时,P,Q之间的距离为6?
高频考点2. 线段和差倍分关系中的动点问题
例1.(2022·贵州黔西·七年级期末)已知点在线段上,,点、在直线上,点在点的左侧.若,,线段在线段上移动.
(1)如图1,当为中点时,求的长;
(2)点(异于,,点)在线段上,,,求的长.
变式1.(2022·陕西岐山县·七年级期中)如图,点,在数轴上所对应的数分别为-5,7(单位长度为),是,间一点,,两点分别从点,出发,以,的速度沿直线向左运动(点在线段上,点在线段上),运动的时间为.
(1)______.(2)若点,运动到任一时刻时,总有,请求出的长.
(3)在(2)的条件下,是数轴上一点,且,求的长.
例2.(2022·四川成都·七年级期末)已知线段AB=m(m为常数),点C为直线AB上一点(不与点A、B重合),点M、N分别在线段BC、AC上,且满足CN=3AN,CM=3BM.
(1)如图,当点C恰好在线段AB中点,且m=8时,则MN=______;
(2) 若点C在点A左侧,同时点M在线段AB上(不与端点重合),请判断CN+2AM -2MN的值是否与m有关?并说明理由.(3) 若点C是直线AB上一点(不与点A、B重合),同时点M在线段AB上(不与端点重合),求MN长度 (用含m的代数式表示).
变式2.(2022·四川成都·七年级期末)如图,已知点C在线段AB上,AB=20,BC=AC,点D,E在射线AB上,点D在点E的左侧.
(1)DE在线段AB上,当E为BC中点时,求CE的长;
(2)在(1)的条件下,点F在线段AB上,CF=3,求EF的长;
(3)若AB=2DE,线段DE在射线AB上移动,且满足关系式4BE=3(AD+CE),求的值.
高频考点3. 线段上动点问题中的存在性(探究性)问题
例1.(2022·浙江·九年级专题练习)如图,点是定长线段上一点,、两点分别从点、出发以1厘米/秒,2厘米/秒的速度沿直线向左运动(点在线段上,点在线段上).
(1)若点、运动到任一时刻时,总有,请说明点在线段上的位置;
(2)在(1)的条件下,点是直线上一点,且,求的值;
(3)在(1)的条件下,若点、运动5秒后,恰好有,此时点停止运动,点继续运动(点在线段上),点、分别是、的中点,下列结论:①的值不变;②的值不变.可以说明,只有一个结论是正确的,请你找出正确的结论并求值.
变式1.(2022·湖北武汉·七年级期末)已知线段AB=m,CD=n,线段CD在直线AB上运动(A在B的左侧,C在D的左侧),且m,n满足|m-12|+(n-4)2=0.
(1)m=  ,n=  ;
(2)点D与点B重合时,线段CD以2个单位长度/秒的速度向左运动.
①如图1,点C在线段AB上,若M是线段AC的中点,N是线段BD的中点,求线段MN的长;
②P是直线AB上A点左侧一点,线段CD运动的同时,点F从点P出发以3个单位/秒的向右运动,点E是线段BC的中点,若点F与点C相遇1秒后与点E相遇.试探索整个运动过程中,FC-5DE是否为定值,若是,请求出该定值;若不是,请说明理由.
例2.(2022·广西桂林·七年级期末)如图,在直线AB上,线段,动点P从A出发,以每秒2个单位长度的速度在直线AB上运动.M为AP的中点,N为BP的中点,设点P的运动时间为t秒.
(1)若点P在线段AB上的运动,当时, ;
(2)若点P在射线AB上的运动,当时,求点P的运动时间t的值;
(3)当点P在线段AB的反向延长线上运动时,线段AB、PM、PN有怎样的数量关系?请写出你的结论,并说明你的理由.
变式2.(2022·湖北青山区·七年级期中)已知线段AB=m,CD=n,线段CD在直线AB上运动(A在B的左侧,C在D的左侧),且m,n满足|m-12|+(n-4)2=0.(1)m=  ,n=  ;
(2)点D与点B重合时,线段CD以2个单位长度/秒的速度向左运动.
①如图1,点C在线段AB上,若M是线段AC的中点,N是线段BD的中点,求线段MN的长;
②P是直线AB上A点左侧一点,线段CD运动的同时,点F从点P出发以3个单位/秒的向右运动,点E是线段BC的中点,若点F与点C相遇1秒后与点E相遇.试探索整个运动过程中,FC-5DE是否为定值,若是,请求出该定值;若不是,请说明理由.
高频考点4. 阅读理解型(新定义)问题
例1.(2022·浙江·七年级课时练习)(理解新知)
如图①,点M在线段AB上,图中共有三条线段AB、AM和BM,若其中有一条线段的长度是另外一条线段长度的2倍,则称点M是线段AB的“奇妙点”,
(1)线段的中点 这条线段的“奇妙点”(填“是”或“不是”)
(2)(初步应用)
如图②,若,点N是线段CD的“奇妙点”,则 ;
(3)(解决问题)
如图③,已知,动点P从点A出发,以速度沿AB向点B匀速移动,点从点B出发,以的速度沿BA向点A匀速移动,点P、同时出发,当其中一点到达终点时,运动停止.设移动的时间为 t,请求出 为何值时,A、P、三点中其中一点恰好是另外两点为端点的线段的“奇妙点”.
变式1.(2022·北京市第七中学七年级期中)如图1,点C把线段AB分成两条线段AC和BC,如果AC=2BC时,则称点C是线段AB的内二倍分割点;如图2,如果BC=2AC时,则称点C是线段BA的内二倍分割点.

例如:如图3,数轴上,点A、B、C、D分别表示数-1、2、1、0,则点C是线段AB的内二倍分割点;点D是线段BA内二倍分割点.
(1)如图4,M、N为数轴上两点,点M所表示的数为-2,点N所表示的数为7.MN的内二倍分割点表示的数是 ;NM的内二倍分割点表示的数是 .
(2)数轴上,点A所表示的数为-30,点B所表示的数为20.点P从点B出发,以2个单位每秒的速度沿数轴向左运动,设运动时间为t(t>0)秒.
①线段BP的长为 ;(用含t的式子表示)
②求当t为何值时,P、A、B三个点中恰有一个点为其余两点的内二倍分割点.
例2.(2022·河南宛城七年级期中)如图一,点在线段上,图中有三条线段、和,若其中一条线段的长度是另外一条线段长度的倍,则称点是线段的“巧点”.
(1)填空:线段的中点 这条线段的巧点(填“是”或“不是”或“不确定是”)
(问题解决)(2)如图二,点和在数轴上表示的数分别是和,点是线段的巧点,求点在数轴上表示的数。
(应用拓展)(3)在(2)的条件下,动点从点处,以每秒个单位的速度沿向点匀速运动,同时动点从点出发,以每秒个单位的速度沿向点匀速运动,当其中一点到达中点时,两个点运动同时停止,当、、三点中,其中一点恰好是另外两点为端点的线段的巧点时,直接写出运动时间的所有可能值.
变式2.(2022·江苏淮安·七年级期末)【探索新知】
如图1,点在线段上,图中共有3条线段:、和,若其中有一条线段的长度是另一条线段长度的两倍,则称点是线段的“二倍点”.
(1)①一条线段的中点 这条线段的“二倍点”;(填“是”或“不是”)
②若线段,是线段的“二倍点”,则 (写出所有结果)
【深入研究】如图2,若线段,点从点的位置开始,以每秒2的速度向点运动,当点到达点时停止运动,运动的时间为秒.(2)问为何值时,点是线段的“二倍点”;
(3)同时点从点的位置开始,以每秒1的速度向点运动,并与点同时停止.请直接写出点是线段的“二倍点”时的值.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
同课章节目录