专题11 角度中的旋转(动态)问题 专项提升(精讲)【备考期中期末】2022-2023学年七年级上学期高频考点+专项提升精讲精练(浙教版)(解析卷)

文档属性

名称 专题11 角度中的旋转(动态)问题 专项提升(精讲)【备考期中期末】2022-2023学年七年级上学期高频考点+专项提升精讲精练(浙教版)(解析卷)
格式 zip
文件大小 5.4MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2022-12-08 20:16:15

文档简介

中小学教育资源及组卷应用平台
专题11 角度中的旋转(动态)问题 专项提升(精讲)
与角有关的旋转(翻折)问题属于浙教版七年级上期必考压轴题型,是尖子生必须要攻克的一块重要内容,对考生的综合素养要求较高。绝大部分学生对角度旋转问题信心不足,原因就是很多角度旋转问题需要自己画出图形,与分类讨论思想、数形结合思想等结合得很紧密,思考性强,难度大。本专题重点研究与角有关的旋转问题(求值问题;定值问题;探究问题;分类讨论问题)和与角有关的翻折问题。
【知识储备】
1、角度旋转问题解题步骤:①找——根据题意找到目标角度; ②表——表示出目标角度:
1)角度一边动另一边不动,角度变大:目标角=起始角+速度×时间;
2)角度一边动另一边不动,角度变小:目标角=起始角—速度×时间;
3)角度一边动另一边不动,角度先变小后变大:
变小:目标角=起始角—速度×时间;变大:目标角=速度×时间—起始角
③列——根据题意列方程求解。
注:①注意题中是否确定旋转方向,未确定时要分顺(逆)时针分类讨论;②注意旋转角度取值范围。
常见的三角板旋转的问题:三角板有两种,一种是等腰直角三角板(90°、45°、45°),另一种是特殊角的直角三角板(90°、60°、30°)。三角板的旋转中隐藏的条件就是上面所说的这几个特殊角的角度。
总之不管这个角如何旋转,它的角度大小是不变的,旋转的度数就是组成角的两条射线旋转的度数(角平分线也旋转了同样的度数)。抓住这些等量关系是解题的关键,三角板只是把具体的度数隐藏起来。
高频考点1. 角度的求值问题
例1.(2022 浙江七年级期中)如图1,为直线上一点,过点作射线,,将一直角三角板()的直角顶点放在点处,一边在射线上,另一边与都在直线的上方.(注:本题旋转角度最多.)
(1)将图1中的三角板绕点以每秒的速度沿顺时针方向旋转.如图2,经过秒后,______度(用含的式子表示),若恰好平分,则______秒(直接写结果).
(2)在(1)问的基础上,若三角板在转动的同时,射线也绕点以每秒的速度沿顺时针方向旋转,如图3,经过秒后,______度(用含的式子表示)若平分,求为多少秒?
(3)若(2)问的条件不变,那么经过秒平分?(直接写结果)
【答案】(1),5;(2),;(3)经过秒平分
【解析】(1),∵,∴
∵平分,,∴,∴
∴,解得:秒
(2)度
∵,平分,∴
∴,∴解得:秒
(3)如图:
∵,
由题可设为,为,∴
∵,,解得:秒
答:经过秒平分.
变式1.(2022·江苏·七年级期中)已知∠AOB和∠COD均为锐角,∠AOB>∠COD,OP平分∠AOC,OQ平分∠BOD,将∠COD绕着点O逆时针旋转,使∠BOC=α(0≤α<180°)
(1)若∠AOB=60°,∠COD=40°,①当α=0°时,如图1,则∠POQ=   ;②当α=80°时,如图2,求∠POQ的度数;③当α=130°时,如图3,请先补全图形,然后求出∠POQ的度数;
(2)若∠AOB=m°,∠COD=n°,m>n,则∠POQ=   ,(请用含m、n的代数式表示).
【答案】(1)①50°;②50°;③130°;(2)m°+n°或180°-m°-n°
【分析】(1)根据角的和差和角平分线的定义即可得到结论;(2)根据角的和差和角平分线的定义即可得到结论.
【详解】解:(1)①∵∠AOB=60°,∠COD=40°,OP平分∠AOC,OQ平分∠BOD,
∴∠BOP=∠AOB=30°,∠BOQ=∠COD=20°,∴∠POQ=50°,故答案为:50°;
②解:∵∠AOB=60°,∠BOC=α=80°,∴∠AOC=140°,
∵OP平分∠AOC,∴∠POC=∠AOC=70°,
∵∠COD=40°,∠BOC=α=80°,且OQ平分∠BOD,同理可求∠DOQ=60°,
∴∠COQ=∠DOQ-∠DOC=20°,∴∠POQ=∠POC-∠COQ=70°-20°=50°;
③解:补全图形如图3所示,
∵∠AOB=60°,∠BOC=α=130°,∴∠AOC=360°-60°-130°=170°,
∵OP平分∠AOC,∴∠POC=∠AOC=85°,
∵∠COD=40°,∠BOC=α=130°,且OQ平分∠BOD,同理可求∠DOQ=85°,
∴∠COQ=∠DOQ-∠DOC=85°-40°=45°,∴∠POQ=∠POC+∠COQ=85°+45°=130°;
(2)当∠AOB=m°,∠COD=n°时,如图2,
∴∠AOC= m°+ °,∵OP平分∠AOC,∴∠POC=(m°+ °),
同理可求∠DOQ=(n°+ °),∴∠COQ=∠DOQ-∠DOC=(n°+ °)- n°=(-n°+ °),
∴∠POQ=∠POC-∠COQ=(m°+ °)-(-n°+ °) =m°+n°,
当∠AOB=m°,∠COD=n°时,如图3,
∵∠AOB=m°,∠BOC=α,∴∠AOC=360°-m°-°,
∵OP平分∠AOC,∴∠POC=∠AOC=180°(m°+ °),
∵∠COD=n°,∠BOC=α,且OQ平分∠BOD,同理可求∠DOQ=(n°+ °),
∴∠COQ=∠DOQ-∠DOC=(n°+ °)-n°=(-n°+ °),
∴∠POQ=∠POC+∠COQ=180°(m°+ °)+(-n°+ °) =180°-m°-n°,
综上所述,若∠AOB=m°,∠COD=n°,则∠POQ=m°+n°或180°-m°-n°.
故答案为:m°+n°或180°-m°-n°.
【点睛】本题考查了角的计算,角平分线的定义,正确的识别图形是解题的关键.
变式2.(2022 高新区期末)已知∠AOB=90°,∠COD=60°,按如图1所示摆放,将OA、OC边重合在直线MN上,OB、OD边在直线MN的两侧:
(1)保持∠AOB不动,将∠COD绕点O旋转至如图2所示的位置,则
①∠AOC+∠BOD=   ;②∠BOC﹣∠AOD=   .
(2)若∠COD按每分钟5°的速度绕点O逆时针方向旋转,∠AOB按每分钟2°的速度也绕点O逆时针方向旋转,OC旋转到射线ON上时都停止运动,设旋转t分钟,计算∠MOC﹣∠AOD(用t的代数式表示).(3)保持∠AOB不动,将∠COD绕点O逆时针方向旋转n°(n≤360),若射线OE平分∠AOC,射线OF平分∠BOD,求∠EOF的大小.
【解题思路】(1)①将∠AOC+∠BOD拆分、转化为∠COD+∠AOB即可得;②依据∠BOC=∠AOB﹣∠AOC、∠AOD=∠COD﹣∠AOC,将原式拆分、转化为∠AOB﹣∠COD计算可得;
(2)设运动时间为t秒,0<t≤36,∠MOC=(5t)°,只需表示出∠AOD即可得出答案,而∠AOD在OD与OA相遇前、后表达式不同,故需分OD与OA相遇前后即0<t≤20和20<t≤36两种情况求解;
(3)设OC绕点O逆时针旋转n°,则OD也绕点O逆时针旋转n°,再分①射线OE、OF在射线OB同侧,在直线MN同侧;②射线OE、OF在射线OB异侧,在直线MN同侧;③射线OE、OF在射线OB异侧,在直线MN异侧;④射线OE、OF在射线OB同侧,在直线MN异侧;四种情况分别求解.
【解答过程】解:(1)①∠AOC+∠BOD=∠AOC+∠AOD+∠AOB=∠COD+∠AOB=60°+90°=150°;
②∠BOC﹣∠AOD=(∠AOB﹣∠AOC)﹣(∠COD﹣∠AOC)=∠AOB﹣∠AOC﹣∠COD+∠AOC
=∠AOB﹣∠COD=90°﹣60°=30°;故答案为:150°、30°;
(2)设运动时间为t秒,0<t≤36,∠MOC=(5t)°,
①0<t≤20时,OD与OA相遇前,∠AOD=(60+2t﹣5t)°=(60﹣3t)°,
∴∠MOC﹣∠AOD=(8t﹣60)°;
②20<t≤36时,OD与OA相遇后,∠AOD=[5t﹣(60+2t)]°=(3t﹣60)°,
∴∠MOC﹣∠AOD=(2t+60)°;
(3)设OC绕点O逆时针旋转n°,则OD也绕点O逆时针旋转n°,
①0<n°≤150°时,如图4,
射线OE、OF在射线OB同侧,在直线MN同侧,
∵∠BOF[90°﹣(n﹣60°)](150﹣n)°,∠BOE=(90n)°(180﹣n)°,
∴∠EOF=∠BOE﹣∠BOF=15°;
②150°<n°≤180°时,如图5,射线OE、OF在射线OB异侧,在直线MN同侧,
∵°,∠BOE=(90n)°(180﹣n)°,∴∠EOF=∠BOE+∠BOF=15°;
③180°<n°≤330°时,如图6,射线OE、OF在射线OB异侧,在直线MN异侧,
∵°,°,∴∠EOF=∠DOF+∠COD+∠COE=165°;
④330°<n°≤360°时,如图7,射线OE、OF在射线OB同侧,在直线MN异侧,
∵∠DOF[360﹣(n﹣150)]°(510﹣n)°,°,
∴∠EOF=∠DOF﹣∠COD﹣∠COE=15°;
综上,∠EOF=15°或165°.
高频考点2. 角度的定值问题(角度不变问题)
例1.(2022·江苏南京·七年级期末)如图,两条直线AB,CD相交于点O,且∠AOC=∠AOD,射线OM从OB开始绕O点逆时针方向旋转,速度为15°/s,射线ON同时从OD开始绕O点顺时针方向旋转,速度为12°/s,运动时间为t秒(0<t<12,本题出现的角均小于平角)
(1)图中一定有   个直角;当t=2时,∠MON的度数为   ,∠BON的度数为   ;
(2)若OE平分∠COM,OF平分∠NOD,当∠EOF为直角时,请求出t的值;
(3)当射线OM在∠COB内部,且是定值时,求t的取值范围,并求出这个定值.
【答案】(1)4;144°,114°;(2)t的值为10s;(3)当射线OM在∠COB内部,且是定值时,t的取值范围为<t<6,这个定值是3
【分析】(1)由直线AB,CD相交于点O,∠AOC=∠AOD即可得到共4个直角;当t=2时求得∠BOM=30°,∠NON=24°,即可得到∠MON、∠BON的度数;
(2)用t分别表示出∠BOM=15t,∠NOD=12t,∠COM=15t﹣90°,根据OE平分∠COM,OF平分∠NOD,分别求得∠COE、∠DOF,由∠EOF为直角即∠COE+∠DOF=90°,列出方程解答即可.
(3)先确定∠MON=180°时,∠BOM=90°时t的值,再分两种情况进行计算,得到0<t<时不是定值,当<t<6时,=3是定值.
【详解】(1)如图所示,∵两条直线AB,CD相交于点O,∠AOC=∠AOD,
∴∠AOC=∠AOD=90°,∴∠BOC=∠BOD=90°,∴图中一定有4个直角;
当t=2时,∠BOM=30°,∠NON=24°,
∴∠MON=30°+90°+24°=144°,∠BON=90°+24°=114°;
故答案为:4;144°,114°;
(2)如图所示,∠BOM=15t,∠NOD=12t,∠COM=15t﹣90°,
∵OE平分∠COM,OF平分∠NOD,
∴∠COE=∠COM=(15t﹣90°),∠DOF=∠DON=×12t,
∵当∠EOF为直角时,∠COE+∠DOF=90°,
∴(15t﹣90°)=×12t,解得t=10,
∴当∠EOF为直角时,t的值为10s;
(3)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,
∴15t+90°+12t=180°,解得t=,
当∠BOM=90°时,15t=90°,解得t=6,
①如图所示,当0<t<时,
∠COM=90°﹣15t,∠BON=90°+12t,
∠MON=∠BOM+∠BOD+∠DON=15t+90°+12t,
∴=,(不是定值)
②如图所示,当<t<6时,
∠COM=90°﹣15t,∠BON=90°+12t,
∠MON=360°﹣(∠BOM+∠BOD+∠DON)=360°﹣(15t+90°+12t)=270°﹣27t,
∴==3,(是定值)
综上所述,当射线OM在∠COB内部,且是定值时,
t的取值范围为<t<6,这个定值是3.
【点睛】此题考察图形中的运动问题,(3)先确定∠MON=180°时,∠BOM=90°时t的值,再分两种情况进行计算,得到0<t<时不是定值,当<t<6时,=3是定值.
变式1.(2022 渝中区七年级期中)如图1,∠AOB=40°,∠COD=60°,OM、ON分别为∠AOB和∠BOD的角平分线.(1)若∠MON=70°,则∠BOC=   °;(2)如图2,∠COD从第(1)问中的位置出发,绕点O逆时针以每秒4°的速度旋转;当OC与OA重合时,∠COD立即反向绕点O顺时针以每秒6°的速度旋转,直到OC与OA互为反向延长线时停止运动.整个运动过程中,∠COD的大小不变,OC旋转后的对应射线记为OC′,OD旋转后的对应射线记为OD′,∠BOD′的角平分线记为ON′,∠AOD′的角平分线记为OP.设运动时间为t秒.①当OC′平分∠BON′时,求出对应的t的值;②请问在整个运动过程中,是否存在某个时间段使得|∠BOP﹣∠MON′|的值不变?若存在,请直接写出这个定值及其对应的t的取值范围(包含运动的起止时间);若不存在,请说明理由.
【解题思路】(1)根据角平分线的定义结合图形根据已知条件求角的大小;
(2)①分类讨论顺时针、逆时针转两种情况,根据角平分线的定义用t表示出角的度数,列出等量关系式求出t;②分类讨论顺时针、逆时针转两种情况,当C′在B下方时,当C′在B上方时,根据角平分线的定义用t表示出角的度数,求在某个时间段使得|∠BOP﹣∠MON′|的值不变,求出这个定值及其对应的t的取值范围.
【解答过程】解:(1)∵OM为∠AOB的角平分线、∠AOB=40°,∴∠MOB=20°.
∵∠MON=70°,∴∠BON=∠MON﹣∠MOB=50°.
∵ON为∠BOD的角平分线,∴∠BON=∠DON=50°.
∴∠CON=∠COD﹣∠DON=10°∴∠BOC=∠DON﹣∠CON=40°.故答案为:40°.
(2)如图①:①逆时针旋转时:
当C′在B上方时,根据题意可知,∠BOC′=40°﹣4t,∠BOD′=∠BOD﹣4t=100°﹣4t.
∠BON′∠BOD′50°﹣2t,
∵OC′平分∠BON′,
∴∠BOC′,即40°﹣4t(50°﹣2t),解得:t=5(s).
当C′在B下方时,此时C′也在N′下方,此时不存在OC′平分∠BON′.
顺时针旋转时:如图②,
同理当C′在B下方时,此时C′也在N′下方,此时不存在OC′平分∠BON′.
当C′在B上方时,即OC′与OB重合,
由题意可求OC′与OB重合用的时间=∠AOC÷4+∠AOB÷6
=(∠AOB+∠BOC)÷4+∠AOB÷6
(s).
∴OC′与OB重合之后,∠BOC′=6(t)(s).
∴∠BOD′=∠BOC′+60°=6(t)+60°=6t﹣100°.
∴∠BON′(6t﹣100°)=3t﹣50°,
∵OC′平分∠BON′,
∴∠BOC′,
∴6(t)(3t﹣50°),
解得:t=30(s)
综上所述t的值为5或30.
②逆时针旋转时:当C′在B上方时,如图③
根据①可知,∠BOC′=40°﹣4t,∠BOD′=100°﹣4t,∠BON′=50°﹣2t.
∴∠AOD′=∠AOB+∠BOD′=140°﹣4t,
∴∠AOP70°﹣2t,
∴∠BOP=∠AOP﹣∠AOB=30°﹣2t,
∵∠MON′=∠MOB+∠BON′=70°﹣2t,
∴|∠BOP﹣∠MON′|=|30°﹣2t﹣70°+2t|=40°,
此段时间0≤t≤10s;
如图④当C′在B下方时,设经过OB后运动时间为t2,
同理可知,∠BOC′=4t2,∠BOD′=60°﹣4t2,
∴,
∴∠AOD′=∠AOB+∠BOD′=100°﹣4t2,
∴,
∴∠BOP=∠AOP﹣∠AOB=10°﹣2t2,
∵∠MON′=∠MOB+∠BON′=50°﹣2t2,
∴|∠BOP﹣∠MON′|=|10°﹣2t2﹣50°+2t2|=40°.
此时:10<t≤20;
顺时针旋转时:当C′在B下方时,如图⑤,
设经过OB后运动时间为t1,
同理可知:∠BOC′=40°﹣6t1,∠BOD′=20°+6t1,
∴,
∴∠AOD′=60°+6t1,
∠AOP=30°+3t1,
∴∠BOP=∠AOP﹣∠AOB=3t1﹣10°,
∵∠MON′=∠MOB+∠BON′=30°﹣3t1,
∴|∠BOP﹣∠MON′|=|3t1﹣10°﹣30°﹣3t1|=40°,
此时:20<t;
当C′在B上方时,如图⑥,
设经过OB后运动时间为t3,
同理可知:,∠BOC′=60°+6t3,∠BOD′=100°+6t3,
∴∠BON′50°+3t3,
∴∠AOD′=140°+6t3,
∴∠AOP=70°+3t3,
∴∠BOP=∠AOP﹣∠AOB=30°+3t3,
∵∠MON′=∠MOB+∠BON′=70°+3t3,
∴|∠BOP﹣∠MON′|=|30°+3t3﹣70°﹣3t3|=40°,
此时:t≤50.
综上所述:存在且定值为40°,0≤t≤50.
变式2.(2022 碑林区七年级开学)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请直接写出结论:直线ON   (平分或不平分)∠AOC.
(2)将图1中的三角板绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为   .(直接写出结果)
(3)将图1中的三角板绕点O顺时针旋转,请探究,当ON始终在∠AOC的内部时(如图3),∠AOM与∠NOC的差是否发生变化?若不变,请求出这个差值;若变化,请举例说明.
【解题思路】(1)设ON的反向延长线为OD,由角平分线的性质和对顶角的性质可求得∠BON=∠AOD=∠COD=30°;
(2)由直线ON恰好平分锐角∠AOC可知旋转60°或240°时直线ON平分∠AOC,根据旋转速度可求得需要的时间;
(3)由∠MON=90°,∠AOC=60°,可知∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,最后求得两角的差,从而可做出判断.
【解答过程】解:(1)直线ON平分∠AOC.
理由如下:
设ON的反向延长线为OD,
∵OM平分∠BOC,∠BOC=120°,
∴∠MOC=∠MOB∠BOC=60°,
又∠MOD=∠MON=90°,
∴∠COD=90°﹣∠MOC=30°,
∵∠AOC=180°﹣∠BOC=60°,
∴∠COD∠AOC,
∴OD平分∠AOC,
即直线ON平分∠AOC,
故答案为:平分;
(2)∵∠BOC=120°,
∴∠AOC=60°.
∴∠BON=∠COD=30°.
即旋转60°或240°时直线ON平分∠AOC.
由题意得,6t=60或240.
解得:t=10或40,
故答案为:10或40;
(3)∠AOM﹣∠NOC的差不变.
∵∠MON=90°,∠AOC=60°,
∴∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON.
∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.
∴∠AOM与∠NOC的差不变,这个差值是30°.
高频考点3. 探究类问题(判断角的数量之间的关系)
例1.(2022·四川·成都市七年级期末)如图所示:点是直线上一点,∠是直角,平分∠.
(1)如图1,若∠=40°,求∠的度数;
(2)如图1,若∠=,直接写出∠的度数(用含的代数式表示);
(3)保持题目条件不变,将图1中的∠按顺时针方向旋转至图2所示的位置,探究∠和∠的度数之间的关系,写出你的结论,并说明理由.
【答案】(1)20°;(2);(3),理由见解析
【分析】(1)首先求得∠BPC,∠BPD的度数,然后根据角平分线的定义求得∠BPE的度数,再根据即可求解;
(2)解法与(1)相同,把(1)中的40°改成α即可;
(3)把∠APC的度数作为已知量,求得∠BPC的度数,然后根据角的平分线的定义求得∠BPE的度数,再根据即可解决.
【详解】(1)∵,,
∴,

又∵平分,
∴,
∴.
(2)∵,,
∴,

又∵平分,
∴,
∴.
(3)结论:.理由如下:
设,则,
∵,
∴,
又∵平分,
∴,
∴,
∴.
【点睛】本题考查了角度的计算,正确理解角平分线的定义,理解角度之间的和差关系是关键.
变式1.(2022·广东七年级期中)如图(a),将两块直角三角尺的直角顶点C叠放在一起.
(1)若∠DCE=25°,∠ACB 等于多少;若∠ACB=130°,则∠DCE 等于多少;
(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;
(3)如图(b),若是两个同样的三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的大小有何关系,请说明理由;(4)已知∠AOB=α,∠COD=β(α、β都是锐角),如图(c),若把它们的顶点O重合在一起,则∠AOD与∠BOC的大小有何关系,请说明理由.
【答案】(1)∠ACB=155°;∠DCE=50°;(2)∠ACB+∠DCE=180°,理由见解析;(3)∠DAB+∠CAE=120°,理由见解析;(4)∠AOD+∠BOC=α+β,理由见解析.
【分析】(1)先求出∠BCD,再代入∠ACB=∠ACD+∠BCD求出即可;先求出∠BCD,再代入∠DCE=∠BCE﹣∠BCD求出即可;(2)根据∠ACB=∠ACE+∠DCE+∠DCE求出即可;
(3)根据∠DAB=∠DAE+∠CAE+∠CAB求出即可;(4)根据∠AOD=∠AOC+∠COB+∠BOD求出即可.
【详解】解:(1)∵∠BCE=90°,∠DCE=25°,∴∠BCD=∠BCE﹣∠DCE=65°,
∵∠ACD=90°,∴∠ACB=∠ACD+∠BCD=90°+65°=155°;
∵∠ACB=130°,∠ACD=90°,∴∠BCD=∠ACB﹣∠ACD=130°﹣90°=40°,
∵∠BCE=90°,∴∠DCE=∠BCE﹣∠BCD=90°﹣40°=50°,故答案为:155°,50°;
(2)∠ACB+∠DCE=180°,理由如下:∵∠ACB=∠ACE+∠DCE+∠DCE,
∴∠ACB+∠DCE=∠ACE+∠DCE+∠DCE+∠DCE=∠ACD+∠BCE=180°;
(3)∠DAB+∠CAE=120°,理由如下:∵∠DAB=∠DAE+∠CAE+∠CAB,
∴∠DAB+∠CAE=∠DAE+∠CAE+∠CAB+∠CAE=∠DAC+∠BAE=120°;
(4)∠AOD+∠BOC=α+β,理由如下:∵∠AOD=∠AOC+∠COB+∠BOD,
∴∠AOD+∠BOC=∠AOC+∠COB+∠BOD+∠BOC=∠AOB+∠COD=α+β.
【点睛】本题考查了角的运算,理解角的和差运算是解题的关键.
变式2.(2022 喀喇沁旗七年级期中)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使点N在OC的反向延长线上,请直接写出图中∠MOB的度数;(2)将图1中的三角板绕点O顺时针旋转至图3,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数;(3)将图1中的三角尺绕点O顺时针旋转至图4,使ON在∠AOC内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由.
【解题思路】(1)根据对顶角求出∠BON,代入∠BOM=∠MON﹣∠BON求出即可;
(2)求出∠BOC=120°,根据角平分线定义请求出∠COM=∠BOM=60°,代入∠CON=∠MON+∠COM求出即可;
(3)用∠AOM和∠CON表示出∠AON,然后列出方程整理即可得解.
【解答过程】解:(1)如图2,∵∠AOC=60°,
∴∠BON=∠AOC=60°,
∵∠MON=90°,
∴∠BOM=∠MON﹣∠BON=30°,
故答案为:30°;
(2)∵∠AOC=60°,
∴∠BOC=180°﹣∠AOC=120°,
∵OM平分∠BOC,
∴∠COM=∠BOM=60°,
∵∠MON=90°,
∴∠CON=∠MON+∠COM=90°+60°=150°;
(3)∠AOM﹣∠NOC=30°,
理由是:∵∠MON=90°,∠AOC=60°,
∴∠AON=90°﹣∠AOM,
∠AON=60°﹣∠NOC,
∴90°﹣∠AOM=60°﹣∠NOC,
∴∠AOM﹣∠NOC=30°,
故∠AOM与∠NOC之间的数量关系为:∠AOM﹣∠NOC=30°.
高频考点4. 分类讨论问题
例1.(2022·成都市七中育才学校七年级月考)一副三角板(直角三角板和直角三角板)如图1所示放置,两个顶点重合于点,与重合,且,,,.将三角板绕着点逆时针旋转一周,旋转过程中,平分,平分,(和均是指小于180°的角)探究的度数.
(1)当三角板绕点旋转至如图2的位置时,与重合,____°,____°.
(2)三角板绕点旋转过程中,的度数还有其他可能吗?如果有,请研究证明结论,若没有,请说明理由.(3)类比拓展:当的度数为时,其他条件不变,在旋转过程中,请直接写出的度数.(用含的式子来表示)
【答案】(1)150;75 (2)有,105° (3)或
【分析】(1)利用两个角的和的定义,角的平分线的定义计算即可; (2)利用分类思想, 确定不同方式计算即可;(3)利用特殊与一般的思想,分类将问题抽象即可.
【详解】(1)如图,由与重合,
∵,,∴.
又∵平分,平分,∴,,
∴.故答案为:150°;75°;
(2)如图,∵平分,平分,

+30°+30°+30°.
∴,∴.
(3)如图,
∵平分,平分,
∴,

∴=+60°-=;
如图,∵OE平分,平分,
∴,
∴.
综上所述,或.
【点睛】本题考查了两个角的和,角的平分线,周角的定义,灵活运用分类思想,角的平分线定义,角的和,差定义计算是解题的关键.
变式1.(2022 广东七年级期末)如图(1),∠BOC和∠AOB都是锐角,射线OB在∠AOC内部,,.(本题所涉及的角都是小于180°的角)
(1)如图(2),OM平分∠BOC,ON平分∠AOC,填空:
①当,时,______,______,______;
②______(用含有或的代数式表示).
(2)如图(3),P为∠AOB内任意一点,直线PQ过点O,点Q在∠AOB外部:
①当OM平分∠POB,ON平分∠POA,∠MON的度数为______;
②当OM平分∠QOB,ON平分∠QOA,∠MON的度数为______;
(∠MON的度数用含有或的代数式表示)
(3)如图(4),当,时,射线OP从OC处以5°/分的速度绕点O开始逆时针旋转一周,同时射线OQ从OB处以相同的速度绕点O逆时针也旋转一周,OM平分∠POQ,ON平分∠POA,那么多少分钟时,∠MON的度数是40°?
【答案】(1);(2),;(3)分钟时,∠MON的度数是40°
【解析】(1)① OM平分∠BOC,ON平分∠AOC,
当,时,,

②,故答案为:
(2)①OM平分∠POB,ON平分∠POA,
②OM平分∠QOB,ON平分∠QOA,
故答案为:,
(3)根据题意
OM平分∠POQ,
如图,当在的外部时,
MON的度数是40°
ON平分∠POA,,,则旋转了
分,即分钟时,∠MON的度数是40°
如图,在的内部时,

此情况不存在,综上所述,分钟时,∠MON的度数是40°
变式2.(2022·成都市七年级阶段练习)定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角,如图1,若,则是的内半角.
(1)如图1,已知,,是的内半角,则________;
(2)如图2,已知,将绕点按顺时针方向旋转一个角度得,当旋转的角度为何值时,是的内半角;
(3)已知,把一块含有角的三角板如图3叠放,将三角板绕顶点以3度/秒的速度按顺时针方向旋转(如图4),问:在旋转一周的过程中,射线,,,能否构成内半角?若能,请求出旋转的时间;若不能,请说明理由.

【答案】(1);(2);(3)能,或或或.
【分析】(1)根据内半角的定义解答即可;(2)根据内半角的定义解答即可;
(3)设按顺时针方向旋转一个角度,旋转的时间为,根据内半角的定义列方程即可得到结论.
【详解】(1)∵是的内半角,,∴,
∵,∴,故答案为:.
(2)∵,∴,
∵是的内半角,
∴,∴,
∴旋转的角度为时,是的内半角.
(3)设按顺时针方向旋转一个角度,旋转的时间为,
如图1,∵是的内半角,,
∴,∴,解得:,∴;
如图2,∵是的内半角,,
∴,∴,∴,∴;
如图3,∵是的内半角,,∴,
∴,∴,∴;
如图4,∵是的内半角,,
∴,
∴,解得:,∴,
综上所述,当旋转的时间为或或或时,射线,,,能构成内半角.
【点睛】本题考查了与角的有关的计算,涉及到角的和差,准确识图理清图中各角度之间的关系是解题的关键.
高频考点5. 折叠(翻折)中的角度问题
【解题技巧】折叠前后对应角、对应边相等;出现角的比值或无角的具体度数却求度数常设列方程。在旋转问题中求解角度是初一数学的难点题型,需要熟悉并灵活运用角度求解的方法,本文就例题详细解析这类题型的解题思路,希望能给初一学生的数学学习带来帮助。
解决本题的关键是根据题目给出的角度或角与角之间的关系,确定射线旋转的角度,再根据射线的旋转速度,就可以求得射线旋转的时间,特别要注意在角的两边所处位置不明确的情况下,必须要考虑多解的可能。
例1.(2022·山东东营·期末)如图,长方形纸片,点、分别在边、上,连接.将对折,点落在直线上的点处,得折痕;将对折,点落在直线上的点处,得折痕.则的度数为( )
A. B. C. D.不能确定
【答案】B
【分析】由翻折可得∠FEN=∠AEN,∠FEM=∠BEM,从而可得∠NEM=∠AEB,进而求解.
【详解】解:由翻折可得∠FEN=∠AEN=∠AEF,∠FEM=∠BEM=∠BEF,
∴∠NEM=∠FEN+∠FEM=(∠AEF+∠BEF)=×180°=90°.故选:B.
【点睛】本题考查角的计算,解题关键通过翻折得到角相等.
变式1.(2022·辽宁沈阳·七年级期末)将一张长方形纸片按如图所示方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为、,若,则的度数为( )
A.40.5° B.41° C.41.5° D.42°
【答案】B
【分析】由长方形和折叠的性质结合题意可求出.再根据,即可求出答案.
【详解】由长方形的性质可知:.
∴,即.
由折叠的性质可知,∴.
∵,∴.故选B.
【点睛】本题考查长方形的性质,折叠的性质.利用数形结合的思想找到角之间的关系是解题关键.
例2.(2022·辽宁西丰县·七年级期中)利用折纸可以作出角平分线.
(1)如图1,若∠AOB=58°,则∠BOC=   .(2)折叠长方形纸片,OC,OD均是折痕,折叠后,点A落在点A′,点B落在点B',连接OA'.①如图2,当点B'在OA'上时,判断∠AOC与∠BOD的关系,并说明理由;②如图3,当点B'在∠COA'的内部时,连接OB',若∠AOC=44°,∠BOD=61°,求∠A'OB'的度数.
【答案】(1)29°;(2)①∠AOC+∠BOD=90°,理由见解析;②30°
【分析】(1)由折叠得出∠AOC=∠BOC,即可得出结论;(2)①由折叠得出∠AOA'=2∠AOC,∠BOB'=2∠BOD,再由点B'落在OA'上,得出∠AOA'+∠BOB'=180°,即可得出结论;
②同①的方法求出∠AOA'=88°,∠BOB'=122°,即可得出结论.
【详解】解:(1)由折叠知,∠AOC=∠BOC=∠AOB,
∵∠AOB=58°,∴∠BOC=∠AOB=×58°=29°,故答案为:29°;
(2)①∠AOC+∠BOD=90°,理由:由折叠知,∠AOC=∠A'OC,∴∠AOA'=2∠AOC,
由折叠知,∠BOD=∠B'OD,∴∠BOB'=2∠BOD,
∵点B'落在OA',∴∠AOA'+∠BOB'=180°,∴2∠AOC+2∠BOD=180°,∴∠AOC+∠BOD=90°;
②由折叠知,∠AOA'=2∠AOC,∠BOB'=2∠BOD,
∵∠AOC=44°,∠BOD=61°,∴∠AOA'=2∠AOC=2×44°=88°,∠BOB'=2∠BOD=2×61°=122°,
∴∠A'OB'=∠AOA'+∠BOB'﹣180°=88°+122°﹣180°=30°,即∠A'OB'的度数为30°.
【点睛】此题主要考查了折叠的性质,平角的定义,角的和差的计算,从图形中找出角之间的关系是解本题的关键.
变式2.(2022·湖南长沙·七年级月考)已知长方形纸片ABCD, E、F分别是AD、AB上的一点,点I在射线BC上、连接EF,FI,将∠A沿EF所在的直线对折,点A落在点H处,∠B沿FI所在的直线对折,点B落在点G处.(1)如图1,当HF与GF重合时,则∠EFI=_________°;
(2)如图2,当重叠角∠HFG=30°时,求∠EFI的度数;
(3)如图3,当∠GFI=α,∠EFH=β时,∠GFI绕点F进行逆时针旋转,且∠GFI总有一条边在∠EFH内,PF是∠GFH的角平分线,QF是∠EFI的角平分线,旋转过程中求出∠PFQ的度数(用含α,β的式子表示).
【答案】(1);(2);(3).
【分析】(1)根据折叠的性质可得∠HFE=∠AFE,∠IFG=∠IFB,再根据∠HFE+∠AFE+∠IFG+∠IFB=180°,即可得到∠EFI=∠HFE+∠IFH=90°;(2)令,,推导出x与y的和即可求得答案;
(3)先求出∠GFH,∠GFP,∠QFI,根据,即可得到答案.
【详解】(1)由折叠的性质得∠HFE=∠AFE,∠IFG=∠IFB,
∵∠HFE+∠AFE+∠IFG+∠IFB=180°,∴∠EFI=∠HFE+∠IFH=90°;
(2)令,∵30°∴30°+x,30+y,
∴180°,
即90°,∴45°,∴75°;
(3),,
∴180°,∴90°,
又∵,
.
【点睛】本题主要考查角平分线的性质,角的计算,解题的关键在于能够熟练掌握相关知识进行求解.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题11 角度中的旋转(动态)问题 专项提升(精讲)
与角有关的旋转(翻折)问题属于浙教版七年级上期必考压轴题型,是尖子生必须要攻克的一块重要内容,对考生的综合素养要求较高。绝大部分学生对角度旋转问题信心不足,原因就是很多角度旋转问题需要自己画出图形,与分类讨论思想、数形结合思想等结合得很紧密,思考性强,难度大。本专题重点研究与角有关的旋转问题(求值问题;定值问题;探究问题;分类讨论问题)和与角有关的翻折问题。
【知识储备】
1、角度旋转问题解题步骤:①找——根据题意找到目标角度; ②表——表示出目标角度:
1)角度一边动另一边不动,角度变大:目标角=起始角+速度×时间;
2)角度一边动另一边不动,角度变小:目标角=起始角—速度×时间;
3)角度一边动另一边不动,角度先变小后变大:
变小:目标角=起始角—速度×时间;变大:目标角=速度×时间—起始角
③列——根据题意列方程求解。
注:①注意题中是否确定旋转方向,未确定时要分顺(逆)时针分类讨论;②注意旋转角度取值范围。
常见的三角板旋转的问题:三角板有两种,一种是等腰直角三角板(90°、45°、45°),另一种是特殊角的直角三角板(90°、60°、30°)。三角板的旋转中隐藏的条件就是上面所说的这几个特殊角的角度。
总之不管这个角如何旋转,它的角度大小是不变的,旋转的度数就是组成角的两条射线旋转的度数(角平分线也旋转了同样的度数)。抓住这些等量关系是解题的关键,三角板只是把具体的度数隐藏起来。
高频考点1. 角度的求值问题
例1.(2022 浙江七年级期中)如图1,为直线上一点,过点作射线,,将一直角三角板()的直角顶点放在点处,一边在射线上,另一边与都在直线的上方.(注:本题旋转角度最多.)
(1)将图1中的三角板绕点以每秒的速度沿顺时针方向旋转.如图2,经过秒后,______度(用含的式子表示),若恰好平分,则______秒(直接写结果).
(2)在(1)问的基础上,若三角板在转动的同时,射线也绕点以每秒的速度沿顺时针方向旋转,如图3,经过秒后,______度(用含的式子表示)若平分,求为多少秒?(3)若(2)问的条件不变,那么经过秒平分?(直接写结果)
变式1.(2022·江苏·七年级期中)已知∠AOB和∠COD均为锐角,∠AOB>∠COD,OP平分∠AOC,OQ平分∠BOD,将∠COD绕着点O逆时针旋转,使∠BOC=α(0≤α<180°)
(1)若∠AOB=60°,∠COD=40°,①当α=0°时,如图1,则∠POQ=   ;②当α=80°时,如图2,求∠POQ的度数;③当α=130°时,如图3,请先补全图形,然后求出∠POQ的度数;
(2)若∠AOB=m°,∠COD=n°,m>n,则∠POQ=   ,(请用含m、n的代数式表示).
变式2.(2022 高新区期末)已知∠AOB=90°,∠COD=60°,按如图1所示摆放,将OA、OC边重合在直线MN上,OB、OD边在直线MN的两侧:
(1)保持∠AOB不动,将∠COD绕点O旋转至如图2所示的位置,则
①∠AOC+∠BOD=   ;②∠BOC﹣∠AOD=   .
(2)若∠COD按每分钟5°的速度绕点O逆时针方向旋转,∠AOB按每分钟2°的速度也绕点O逆时针方向旋转,OC旋转到射线ON上时都停止运动,设旋转t分钟,计算∠MOC﹣∠AOD(用t的代数式表示).(3)保持∠AOB不动,将∠COD绕点O逆时针方向旋转n°(n≤360),若射线OE平分∠AOC,射线OF平分∠BOD,求∠EOF的大小.
高频考点2. 角度的定值问题(角度不变问题)
例1.(2022·江苏南京·七年级期末)如图,两条直线AB,CD相交于点O,且∠AOC=∠AOD,射线OM从OB开始绕O点逆时针方向旋转,速度为15°/s,射线ON同时从OD开始绕O点顺时针方向旋转,速度为12°/s,运动时间为t秒(0<t<12,本题出现的角均小于平角)
(1)图中一定有   个直角;当t=2时,∠MON的度数为   ,∠BON的度数为   ;
(2)若OE平分∠COM,OF平分∠NOD,当∠EOF为直角时,请求出t的值;
(3)当射线OM在∠COB内部,且是定值时,求t的取值范围,并求出这个定值.
变式1.(2022 渝中区七年级期中)如图1,∠AOB=40°,∠COD=60°,OM、ON分别为∠AOB和∠BOD的角平分线.(1)若∠MON=70°,则∠BOC=   °;(2)如图2,∠COD从第(1)问中的位置出发,绕点O逆时针以每秒4°的速度旋转;当OC与OA重合时,∠COD立即反向绕点O顺时针以每秒6°的速度旋转,直到OC与OA互为反向延长线时停止运动.整个运动过程中,∠COD的大小不变,OC旋转后的对应射线记为OC′,OD旋转后的对应射线记为OD′,∠BOD′的角平分线记为ON′,∠AOD′的角平分线记为OP.设运动时间为t秒.①当OC′平分∠BON′时,求出对应的t的值;②请问在整个运动过程中,是否存在某个时间段使得|∠BOP﹣∠MON′|的值不变?若存在,请直接写出这个定值及其对应的t的取值范围(包含运动的起止时间);若不存在,请说明理由.
变式2.(2022 碑林区七年级开学)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请直接写出结论:直线ON   (平分或不平分)∠AOC.
(2)将图1中的三角板绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为   .(直接写出结果)
(3)将图1中的三角板绕点O顺时针旋转,请探究,当ON始终在∠AOC的内部时(如图3),∠AOM与∠NOC的差是否发生变化?若不变,请求出这个差值;若变化,请举例说明.
高频考点3. 探究类问题(判断角的数量之间的关系)
例1.(2022·四川·成都市七年级期末)如图所示:点是直线上一点,∠是直角,平分∠.
(1)如图1,若∠=40°,求∠的度数;
(2)如图1,若∠=,直接写出∠的度数(用含的代数式表示);
(3)保持题目条件不变,将图1中的∠按顺时针方向旋转至图2所示的位置,探究∠和∠的度数之间的关系,写出你的结论,并说明理由.
变式1.(2022·广东七年级期中)如图(a),将两块直角三角尺的直角顶点C叠放在一起.
(1)若∠DCE=25°,∠ACB 等于多少;若∠ACB=130°,则∠DCE 等于多少;
(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;
(3)如图(b),若是两个同样的三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的大小有何关系,请说明理由;(4)已知∠AOB=α,∠COD=β(α、β都是锐角),如图(c),若把它们的顶点O重合在一起,则∠AOD与∠BOC的大小有何关系,请说明理由.
变式2.(2022 喀喇沁旗七年级期中)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使点N在OC的反向延长线上,请直接写出图中∠MOB的度数;(2)将图1中的三角板绕点O顺时针旋转至图3,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数;(3)将图1中的三角尺绕点O顺时针旋转至图4,使ON在∠AOC内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由.
高频考点4. 分类讨论问题
例1.(2022·成都市七中育才学校七年级月考)一副三角板(直角三角板和直角三角板)如图1所示放置,两个顶点重合于点,与重合,且,,,.将三角板绕着点逆时针旋转一周,旋转过程中,平分,平分,(和均是指小于180°的角)探究的度数.
(1)当三角板绕点旋转至如图2的位置时,与重合,____°,____°.
(2)三角板绕点旋转过程中,的度数还有其他可能吗?如果有,请研究证明结论,若没有,请说明理由.(3)类比拓展:当的度数为时,其他条件不变,在旋转过程中,请直接写出的度数.(用含的式子来表示)
变式1.(2022 广东七年级期末)如图(1),∠BOC和∠AOB都是锐角,射线OB在∠AOC内部,,.(本题所涉及的角都是小于180°的角)
(1)如图(2),OM平分∠BOC,ON平分∠AOC,填空:
①当,时,______,______,______;
②______(用含有或的代数式表示).
(2)如图(3),P为∠AOB内任意一点,直线PQ过点O,点Q在∠AOB外部:
①当OM平分∠POB,ON平分∠POA,∠MON的度数为______;
②当OM平分∠QOB,ON平分∠QOA,∠MON的度数为______;
(∠MON的度数用含有或的代数式表示)
(3)如图(4),当,时,射线OP从OC处以5°/分的速度绕点O开始逆时针旋转一周,同时射线OQ从OB处以相同的速度绕点O逆时针也旋转一周,OM平分∠POQ,ON平分∠POA,那么多少分钟时,∠MON的度数是40°?
变式2.(2022·成都市七年级阶段练习)定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角,如图1,若,则是的内半角.
(1)如图1,已知,,是的内半角,则________;
(2)如图2,已知,将绕点按顺时针方向旋转一个角度得,当旋转的角度为何值时,是的内半角;
(3)已知,把一块含有角的三角板如图3叠放,将三角板绕顶点以3度/秒的速度按顺时针方向旋转(如图4),问:在旋转一周的过程中,射线,,,能否构成内半角?若能,请求出旋转的时间;若不能,请说明理由.

高频考点5. 折叠(翻折)中的角度问题
【解题技巧】折叠前后对应角、对应边相等;出现角的比值或无角的具体度数却求度数常设列方程。在旋转问题中求解角度是初一数学的难点题型,需要熟悉并灵活运用角度求解的方法,本文就例题详细解析这类题型的解题思路,希望能给初一学生的数学学习带来帮助。
解决本题的关键是根据题目给出的角度或角与角之间的关系,确定射线旋转的角度,再根据射线的旋转速度,就可以求得射线旋转的时间,特别要注意在角的两边所处位置不明确的情况下,必须要考虑多解的可能。
例1.(2022·山东东营·期末)如图,长方形纸片,点、分别在边、上,连接.将对折,点落在直线上的点处,得折痕;将对折,点落在直线上的点处,得折痕.则的度数为( )
A. B. C. D.不能确定
变式1.(2022·辽宁沈阳·七年级期末)将一张长方形纸片按如图所示方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为、,若,则的度数为( )
A.40.5° B.41° C.41.5° D.42°
例2.(2022·辽宁西丰县·七年级期中)利用折纸可以作出角平分线.
(1)如图1,若∠AOB=58°,则∠BOC=   .(2)折叠长方形纸片,OC,OD均是折痕,折叠后,点A落在点A′,点B落在点B',连接OA'.①如图2,当点B'在OA'上时,判断∠AOC与∠BOD的关系,并说明理由;②如图3,当点B'在∠COA'的内部时,连接OB',若∠AOC=44°,∠BOD=61°,求∠A'OB'的度数.
变式2.(2022·湖南长沙·七年级月考)已知长方形纸片ABCD, E、F分别是AD、AB上的一点,点I在射线BC上、连接EF,FI,将∠A沿EF所在的直线对折,点A落在点H处,∠B沿FI所在的直线对折,点B落在点G处.(1)如图1,当HF与GF重合时,则∠EFI=_________°;
(2)如图2,当重叠角∠HFG=30°时,求∠EFI的度数;
(3)如图3,当∠GFI=α,∠EFH=β时,∠GFI绕点F进行逆时针旋转,且∠GFI总有一条边在∠EFH内,PF是∠GFH的角平分线,QF是∠EFI的角平分线,旋转过程中求出∠PFQ的度数(用含α,β的式子表示).
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
同课章节目录