【课时训练】23.2 中心对称-人教版数学九年级上册(pdf版,含答案)

文档属性

名称 【课时训练】23.2 中心对称-人教版数学九年级上册(pdf版,含答案)
格式 zip
文件大小 1.8MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2022-12-10 12:28:23

文档简介

班级:
姓名:
→23.2中心对称
23.2.1中心对称
知识要点全练
夯实

规律方法全练
捉升熊力
c000c3100000c020000n0c0000C302000100
知识点1
中心对称的概念
6.(河南)如图,将一朵小花放置在平面直角坐标
1.如图所示的4组图形中,右边的图形与左边的
系中第三象限内的甲位置,先将它绕原点O
图形成中心对称的是
旋转180°到乙位置,再将它向下平移2个单位
SE 25 JL F3
长度到丙位置,则小花顶点A在丙位置中的
对应点A'的坐标为
()
2.下列四组图形中,成中心对称的有
A.(3,1)
B.(1,3)
C.(3,-1)
D.(1,1)
3




A.1组
B.2组
C.3组
D.4组
知识点2中心对称的性质
3.如图,△ABC绕点O旋转180°,得到△DEF,
(第6题图)
(第7题图)
下列说法错误的是
(
7.如图,在平面直角坐标系中,若△ABC和
A.△ABC与△DEF关于点B成中心对称
△AB,C关于点E成中心对称,则对称点E
B.点B和点E关于点O对称
的坐标为
C.△ABC≌△DEF
8.如图,在△OAB中,OA=
D.CE-BF
OB=2,∠AOB=45°,C是
AB的中点,则点O关于点C
3
的对称点的坐标是
(第3題图)
(第4題图》
4.如图,△ABC与△A'B'C'关于点O成中心对
探究创新全练
挑战自我
称.ED是△ABC的中位线,ED'是△A'BC
9.如图,AD是△ABC的边BC上的中线.
的中位线,已知BC=4,则ED'的值为()
(1)画出以点D为对称中心,与△ABD成中
A.2
B.3
C.4
D.1.5
心对称的三角形;
知识点3中心对称作图
(2)若AB=13,AC=5,AD=6,求BC的长.
5.已知△ABC和点O,求作△ABC关于点O成
3
中心对称的图形.
……
........
057
第二十三章旋转
23.2.2
中心对称图形
知识要点全练

规律方法全练
升能力
知识点1中心对称图形的概念
6.有下列图形:①等腰三角形;②平行四边形:
1.下列图形是我国国产品牌汽车的标识,在这些
③等腰梯形;④圆;⑤正六边形;⑥菱形;⑦正
汽车标识中,是中心对称图形的是
五边形.其中是中心对称图形的有
()
A.3个B.4个C.5个D.6个
7.下列交通标识中,是轴对称图形,但不是中心
对称图形的是
2.下列垃圾分类标识的图案既是轴对称图形,又
是中心对称图形的是
(
B
C
D
公X 命
8.
如图,点A,B,C的坐标分别为(0,一1),(0,2),
A
B
C
D
(3,0),从下面的四个点M(3,3),N(3,-3),
知识点2中心对称图形的性质
P(一3,0),Q(一3,1)中选择一个点,若以A,
3.如图是一个中心对称图形,点A是对称中心,
B,C及该点为顶点的四边形不是中心对称图
若∠C=90°,∠B=30°,AC=√3,则BB的长
形,则该点是

(
A.点M
B.点N
C.点PD.点Q
中1
A.2√3B.3√3
C.4√3
D.6√3

D
Y

(第8题图)
(第9题图)
(第3题图)
(第4题图)
9.如图,在4×4的正方形网格中,每个小正方形
4.如图,四边形ABCD是菱形,O是两条对角线
的顶点称为格点,左上角阴影部分是一个以格
的交点,过点O的三条直线将菱形分成阴影
点为顶点的正方形(简称格点正方形).若再作
和空白部分,当菱形的两条对角线的长分别为
一个格点正方形,并涂上阴影,使这两个格点
6和8时,阴影部分的面积为
(
正方形无重叠面积,且组成的图形既是轴对称
A.24
B.12
C.6
D.10
图形,又是中心对称图形,则这个格点正方形
知识点3利用中心对称图形的性质作图
的作法共有

5.已知六边形ABCDEF是以点O为对称中心
的中心对称图形(如图所示),画出六边形
探究创新全练
挑战自我
ABCDEF的全部图形,并指出所有的对应点
10.如图是一块“L”形钢板,工人师傅欲把它分成
和对应线段
面积相等的两块,请你帮这位师傅画出一条
分割线:
戴学·九年级·上册·RJ058参考答案
第二十一章一元二次方程
8.C9.(1)解:x1=
2,=-4。(2)解:西=之,=
21.1一元二次方程
-2.
10.C11.A12.B13.-114.士115.1或-3
1.D2.C3.-34.A5.06.(1)解:一般形式:2x2
16.117.三18.(1)解:x=8,x=-14.(2)解:1=x=
3x十5=0,其中二次项系数为2,一次项系数为一3,常数项
为5.(2)解:一般形式:3x2一6x=0,其中二次项系数为3,
√3.(3)解:0=0,2=1.(4)解:01=1十√3,=1一√3.
一次项系数为一6,常数项为0.(3)解:一般形式:x2一2
19.解:x2-8x+17=(x2-8.x+16)-16+17=(x-4)2+
0,其中二次项系数为1,一次项系数为0,常数项为一2.
1.(x-4)2≥0,.(x-4)2+1≥1,即x2-8x+17的值大
于0.当x一4=0,即x=4时,这个代数式的值最小,最小值
7.A8.D9.-110.111.B12.C13.2x(x-1)=
为1.20.解:(1):a2+b十2-6a-86-10c+50=0,
.(a-3)2十(b-4)2十(c-5)2=0,.a=3,b=4,c=5.
3614.C15.A16.B17.D18.B19.m≠320.
1
(2)直角三角形.
21.-222.解:(1)当k2-1=0且k+1≠0,即k=1时,此
21.2.2公式法
方程为一元一次方程,此时方程为2x一2=0,解得x=1,
1.D2.A3.A4.45.k<16.m5且m≠4
(2)当2一1≠0,即≠士1时,此方程为一元二次方程.此
7.解::关于x的方程x2一2x十2m一1=0有实数根,6
时二次项系数为2一1,一次项系数为十1,常数项为一2.
一4ac=4-4(2m-1)≥0,解得m≤1.m为正整数,.m=
23.解:化简,原式=42-1-(m2-2m十1)十8m÷(-8m)=
1,.x2-2x+1=0.则(x-1)2=0,解得x1=x=1.8.C
4-1-m+2m-1-m2=2m2+2m-2=2(m2+m)-2.
,m是方程x2十x一2=0的根,∴.m2十m=2..原式=2×
9.C10.1)解:=1,=分.(2)解:=二1区
6
2一2=2.24,解:都不正确,均考虑不全面.正确的解法如
下:要使x2+一3.x-十1=0是关于x的一元二次方程,则
=-1+13
6
(3)解:=一号=是.4)解
(2a士6,2或{2a+b2或{2ab2或{2a+bl或
a-b=2
1a-b=1
a-b=0
1a-b=2
-3+/29
2
=二3-2
2
.11.D12.A13.A14.B
a=4
2
12a十b=0,解得
3
=
3
15.B16.四17.(1)解:x1=-1十√2,x=-1-√2.
a-b=2,
6=-2或{80或
1b=
(2)解:1=,x=2.18.解:(1)根据题意,得4=(-3)
3
2
8
3
4≥0,解得≤4.(2)由(1),得k的最大整数为2,方程
6=
x2一3x+k=0变形为x2一3x+2=0,解得x1=1,x2=2.
:一元二次方程(m-1)x2+x十m-3=0与方程x一3x十
21.2解一元二次方程
k=0有一个相同的根,.当x=1时,m一1十1十m一3=0,
3
21.2.1配方法
解得m=
;当x=2时,4(m-1)十2十m-3=0,解得m
第1课时用直接开平方法解一元二次方程
1.C2.B3.B4.x1=2.x2=-√25.士3
1,而m-1≠0,m的值为子.19.1)证明:4=[-(
8
.(1)解:1=5,=-5。(2)解:=,x2=-令.
+2)]2一4×2k=k一4+4=(k一2)2,无论k为何实数,(及
一2)2≥0,即△≥0,.无论取任何实数值,方程总有实数
(3)解:原一元二次方程无实数根.(4)解:x=2√3,x:=
根.
(2)解:由(1)知,x=+2±,k-2,1=,=2.
2
-25.7.D8.A9.D10.211.(1)解:1=7,2
,△ABC是等腰三角形,①当k=1时,三边长为1,1,2,不
.(2)解:方程无实数根.12.D13.C14.D
3
能构成三角形:②当k=2时,三边长为2,2,1,周长为5.综上所
述,△ABC的周长为5.
15.±216.417.1318.1)解:x=2+5.
21.2.3因式分解法
1.C2.A3.D4.x=05.26.(1)解:y=0,2=2.
(2)解:x1=3十5,x:=3一√5,(3)解:x1=一7,x2=一1
(2)解:x1=x2=1.(3)解:x1=8,x2=2.解:x1=一1,
19.解:方程(x一1》2=2十2的一个根是x=3,.(3一1)2
x=2.7.D8.B9.(1)直接开平方(2)配方(3)因
1
k2十2,解得k=士√2.∴原方程为(x一1)2=4,解得=3,
式分解10.(1)解:直接开平方法.西=2x=一2·
5
x2=一1.方程的另一个根是x=一1.20.解:(x一3)2=
1,根据平方根的意义,得x一3=士1,即x1=4,x=2.因为
(2)解:公式法.1=3+5.
2
.(3)解:配方法.
一元二次方程(x一3)2=1的两个解恰好分别是等腰△ABC
的底边长和腰长,所以①当底边长和腰长分别是4和2时,
西=3+√4,x2=3-√4.(4)解:因式分解法.x1=2
4=2十2.此时不能构成三角形;②当底边长和腰长分别是
2和4时,△ABC的周长为2+4+4=10.21.解:设点D
x2=2.11.C12.B13.A14.B15.116.4
出发xs后△DBE的面积为50cm.根据题意,得2(12-
17.(1)解:1=一3+厘
8
x=二3-4T
8
(2)解:x1=
2.x)2=50,解得x1=1,x2=11.经检验xg=11不符合题
2,x2=一4.(3)解:x1=0,x2=4,18.解:把x=3代人方
意,舍去.答:点D出发1s后,△DBE的面积为50cm.
程中,得9一3(m十1)十2m=0,∴.m=6,于是原方程为x2
第2课时用配方法解一元二次方程
7x十12=0,,,(x一3)(x一4)=0.,,x1=3,x:=4.①当
1.D2.c3.33(2(g)广令
△ABC的腰长为3,底边长为4时,△ABC的周长为3+3十
4.D5.D
4=10.②当△ABC的腰长为4,底边长为3时,△ABC的
6,(1)解:x2+2x=99,配方,得x2十2x十1=99十1,即(x十
周长为4十4十3=11.综上所述,△ABC的周长为10或11.
1)2=100,x+1=士10.x1=9,x2=-11.(2)解:x2+
19.(1)24(2)①解:(x-4)(x十1)=0,.x1=4,x2=-1.
10x=一9,配方,得x2+10x十25=一9十25,即(x十5)2=
②A(3)①0,±6,±15②7
16,∴.x十5=士4.x1=一1,x2=一9.(3)解:x2一x
专题训练(一)一元二次方程的解法
子配方得x-x+()广=子+()广,即(-合)
7
1.D2.(1)解:x+1=士3,即x十1=3,或x+1=-3.
∴x1=2,x=一4.(2)解:x一2=士(2.x十3),即x-2=
=士E.=+E=合-E..C
2,.x-2
2x十3,或x一2=-2x一3.x1=一5,x2=
1
3
3.(1)解:(x一3)(x一3十2x)=0,x一3=0,或3x一3=0.
·139·