参考答案
第一章特殊平行四边形
Rt△AHE(HL).,.AC=AH..'AE平分∠CAB.∴.∠CAF=
(AC-AH.
1菱形的性质与判定
∠HAF.在△CAF和△HAF中,∠CAF=∠HAF,
第1课时菱形的性质
AF=AF.
1.C2.有一组邻边相等的平行四边形是菱形3.B
.△CAF≌△HAF(SAS)..∠ACD=∠AHF.CD⊥
4.C5.B6.D7.48.72°9.410.(2+√2,√2)
AB,∠ACB=90°,.∠CDA=∠ACB=90°,.∠B十
11.(1)证明:四边形ABCD是菱形,∴.AB=CD,AB∥
∠CAB=90°,∠CAB+∠ACD=90°..∠ACD=∠B
CD.又BE=AB,,BE=CD,BE∥CD.,四边形BECD
∠AHF.∴.FH∥CE.:CD⊥AB,EH⊥AB,∴.CF∥EH,
是平行四边形.,BD=EC.(2)解:·四边形BECD是
.四边形CFHE是平行四边形.,CE=EH,∴.四边形
平行四边形,.BD∥CE..∠ABO=∠E=50°.又四边
CFHE是菱形.17.(1)证明::△ABC是等
形ABCD是菱形,.AC⊥BD.∴.∠BAO=90°-∠ABO=
腰三角形,AD是边BC上的高,∴.点D为BC
40°,12.D13.1014.2√215.√3+1
的中点.:点E是AB的中点,∴.DE∥AC.同
16.(1)证明:,四边形ABCD是菱形,,∠B=∠D,AB
理,DF∥AB,.四边形AEDF是平行四边形
CD,BC=DA.又E,F分别是边BC,AD的中点,∴.BE=
,点E,F分别是AB,AC的中点,AB=AC,
DF-BC--
∴.AE=AF.∴.四边形AEDF是菱形.(2)解:连接EF
DA.△ABE≌△CDF.(2)23,
交AD于点O,,菱形AEDF的周长为12,,AE=3,设
17.(1)证明:,四边形ABCD是菱形,,.AC平分∠BAD
AO=x,EO=.,菱形AEDF的两条对角线的和等于7,
AB=AD.BE=DF,.AB一BE=AD一DF,即AE=
7
,x十y=
,在△AE0中,由勾股定理得AO十EO=
AF.又,'AC平分∠BAD,.AC⊥EF(三线合一).
(2)解:,四边形ABCD是菱形,.AC⊥BD,BO=DO=
AE,即x2十y2=32=9,变形得(x十y)2一2xy=9,即
2BD=2V3,AO=OC.又AC⊥EF,BD∥EF.
(号)广-2y=9,解得y-,四边形ABDF的面积
∠BDC=∠G=30..在Rt△COD中,CD=2OC,
2xyX4=13
S=
1
OC+OD=CD.设OC=x,则CD=2x,∴.x2+(23)=
(2x)2.解得=2,x2=-2(舍),即OC=2..A0=OC=
2矩形的性质与判定
2.18.(1)证明:连接AC.,BD是菱形ABCD
第1课时矩形的性质
的对角线,.BD垂直平分AC.,AE=EC
1.B2.C3.D4,A5.16.解:四边形ABCD是矩
(2)解:点F是线段BC的中点,理由如下:,在
形,.OA=OB=OC=OD.:∠AOD=120°,∠AOB=
菱形ABCD中,AB=BC,又,∠ABC=60°
60°.∴.△AOB是等边三角形..AO=AB=4..AC=
∴△ABC是等边三角形,∠BAC=60°.,AE=
2AO=8.7.证明:,四边形ABCD是矩形,.∠A
EC,∠CEF=60°,..∠EAC=30°,∠EAB=
∠D=90°.,EF⊥CE,.∠FEC=90°..∠AEF+∠DEC=
30°.∴.AF是△ABC的角平分线.,AF交BC于点F,
90°.又,在△AEF中,∠AEF+∠AFE=90°,∴.∠AFE=
AF是等边△ABC的BC边上的中线.∴点F是线段BC
∠A=∠D,
的中点.
∠DEC.在△AEF和△DCE中,∠AFE=∠DEC,
第2课时菱形的判定
AE=CD.
1.B 2.B 3.C 4.C 5.AB=AC
∴.△AEF≌△DCE(AAS).∴.AF=DE.8.B9.C
6.证明:连接BD交AC于点O.四边形ABCD是菱形,
10.B11.A12.15°13.23
∴.OA=OC,OB=OD,AC⊥BD.,AE=CF,.OE=OF
14.(1)证明:在矩形ABCD中,AB∥CD,
四边形BEDF是平行四边形.,EF⊥BD,.四边形
∠BAC=∠FCO.又,∠AOE=
BEDF是菱形
∠COF,AE=CF,..△AOE≌△COF
(AAS).∴.OE=OF.(2)解:连接OB.
,BE=BF,OE=OF,,BO⊥EF.△AOE≌△COF
∴.AO=CO.又,AB⊥BC,∴.OA=OB=OC.∴.∠BAC
∠ABO.:∠BEF=2∠BAC,∠BEF+∠ABO=90°,即
2∠BAC+∠BAC=90°..∴.∠BAC=30°..BC=2/3,
(第6题图)
(第9题图)
..AC=2BC=43...AB=ACe-BC=6.
7.D8.49.(1)证明:,四边形ABCD是平行四边形
15.证明:连接GE,GD.AD,BE是△ABC的
.AD∥BC..∠DAC=∠BCA.∠BAC=∠DAC,
,∠BAC=∠BCA.∴,AB=BC.(2)解:连接BD交AC
高,G是AB的中点,GE=
AB.GD=
于点O,四边形ABCD是平行四边形,AB=BC,,四边
形ABCD是菱形.·AC⊥BD,OA=OC=号AC=5,
AB.GE=GD,:F是DE的中点,GFL
DE.16.(1)证明:四边形ABCD为矩形,,AD∥BC
∴.∠EAO=∠BFO.又.∠AOE=∠FOB.AE=BF,
OB=OD=BD.:.OB=AB-OA=2-(3)=
,'.△AOE≌△FOB.,,EO=BO.'.AO是△ABE的边BE
1.BD=20B=2.÷口ABCD的面积=号AC·BD=
上的中线,∴△AOB和△AOE是“友好三角形”
(2)解::△AOE和△DOE是“友好三角形”,.SAE=
7×25×2=25.10.D1.12012.国13.菱形
SADOEAE=-ED=2AD=3.“△AOB和△AOE是“友好
16√214.8√315.证明::DM∥AB,.∠BAM=
三角形”,S△wB=S△0E,△AOE≌△FOB,.S△E=
∠AMD.,△ADC是由△ABC翻折得到.∴.∠CAB=∠CAD.
S△O8..S△ND=S△AF.·SH边EIOF=SEAD一2S△F=4X
AB=AD,BM=DM.∴∠DAM=∠AMD..DA=DM=
6-2×1×4×3=12.
2
AB=BM..四边形ABMD是菱形.16.证明::∠ACB=
90°,AE平分∠BAC,EH⊥AB,∴.CE=EH.在Rt△ACE和
第2课时矩形的判定
Rt△AHE中,AE=AE,CE=EH,∴.Rt△ACE≌
1.C2.证明:(1),AF∥BC,.∠AFE=∠DBE.,E是线
·155·班级:
姓名:
本章重难点突破
高频考点集训
数y=(x>0)的图象上,若AB=1,则的
考点1反比例函数的概念
值为
1.如果函数y=(2一k)x3-是反比例函数,那么
k的值是
(
A.1
B.
2
C.√2
D.2
A.±2B.2
C.-2
D.±3
8.(滨州)如图,在平面直角坐标系中,菱形
2.如图,△OPQ是边长为2的
OABC的边OA在x轴的正半轴上,反比例函
等边三角形,若反比例函数
的图象经过点P,则它的表
数y=(x>0)的图象经过对角线OB的中
达式是
点D和顶点C.若菱形OABC的面积为12,则
考点2反比例函数的图象与性质
及的值为
A.6
B.5
C.4
D.3
3.若点A(x1,3),B(x2,2),C(xa,一1)在反比例
函数y=一十5的图象上,则x1,,x的
大小关系是
(
A.x1B.x:C.2D.x(第8题图)
(第9题图)
4(2020无锡)反比例函数y一票与一次两数
9.(济宁)如图,点A的坐标是(一2,0),点B的
坐标是(0,6),C为OB的中点,将△ABC绕点
是十吕的图象有-个交点B(分m),则的
8
B逆时针旋转90°后得到△A'BC'.若反比例
函数y=的图象恰好经过A'B的中点D,则
值为
(
)
k的值是
(
A.1
B.2
C.
2
D.3
A.9
B.12
C.15
D.18
5.已知反比例函数y=12
10.(2020北部湾)如图,点A,B是直线y=x上
当2的两点,过A,B两点分别作x轴的平行线交
大整数值是
双曲线y=1(x>0)于点C,D.若AC=
6.(绥化)一次函数y=一x十6与反比例函数
x
为=8(x>0)的图象如图所示,当>时,
√3BD,则3OD一OC的值为
A.5
B.3√2
C.4
D.2√3
自变量x的取值范围是
=
(第10题图)
(第11题图)
11.(荆门)如图,已知点A(1,2)是反比例函数
(第6题图)
(第7题图)
考点3反比例函数与几何知识的综合应用
y一皇图象上的一点,连接A0并延长交双曲
7.(枣庄)如图,在平面直角坐标系中,等腰直角
线的另一分支于点B,点P是x轴上一动点.
三角形ABC的顶点A,B分别在x轴、y轴的
若△PAB是等腰三角形,则点P的坐标是
正半轴上,∠ABC=90°,CA⊥x轴,点C在函
117