第十三章 立体几何初步
13.1.1 棱柱、棱锥和棱台
立体几何是研究三维空间中物体的形状、大小和位置关系的一门数学学科,而三维空间是人们生存发展的现实空间.所以,学习立体几何对我们认识、理解现实世界,更好地生存与发展具有重要的意义.《立体几何初步》一章,是在义务教育阶段“空间与图形”课程的延续与发展,教材的编写力图凸显《普通高中数学课程标准》(以下简称《课程标准》)对立体几何的教学要求,通过直观感知、操作确认、思辩论证、度量计算等方法,以帮助学生实现逐步形成空间想像能力这一教学目的.
课程目标 学科素养
1.通过观察实例,概括出棱柱、棱锥、棱台的定义. 2.掌握棱柱、棱锥、棱台的结构特征及相关概念. 3.能说出棱柱、棱锥、棱台的性质,并会画简单的棱柱、棱锥、棱台. 通过棱柱、棱锥、棱台的定义和空间结构特征的学习,重点培养数学抽象素养及提升直观想象素养.
1.教学重点:认识棱柱、棱锥、棱台的结构特征.
2.教学难点:能够根据棱柱、棱锥、棱台的定义判断几何体的形状.
多媒体调试、讲义分发。
观察下列图片:
问题 1.图(1)(2)(3)中的物体的形状有何特点?
提示 1.由若干个平面多边形围成.
知识点一 棱柱的结构特征
类别 定义 图形及表示 相关概念 命名
棱柱 由一个平面多边形沿某一方向平移形成的空间图形叫作棱柱 如图可记作: 棱柱ABCDEF— A′B′C′D′E′F′ 底面:平移起止位置的两个面, 侧面:多边形的边平移所形成的面, 侧棱:相邻侧面的公共边, 顶点:侧面与底面的公共顶点 底面为三角形、四边形、五边形……的棱柱分别称为三棱柱、四棱柱、五棱柱……
知识点二 棱锥的结构特征
类别 定义 图形及表示 相关概念 命名
棱锥 当棱柱的一个底面收缩为一个点时,得到的空间图形叫作棱锥 如图可记作: 棱锥S—ABCD 底面:多边形面, 侧面:有一个公共顶点的各个三角形面, 侧棱:相邻侧面的公共边, 顶点:由棱柱的一个底面收缩而成 按底面多边形的边数分:三棱锥、四棱锥……
知识点三 棱台的结构特征
类别 定义 图形及表示 相关概念 命名
棱台 用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分称之为棱台 如图可记作: 棱台ABCD— A′B′C′D′ 上底面:原棱锥的截面, 下底面:原棱锥的底面, 侧面:其余各面, 侧棱:相邻侧面的公共边, 顶点:侧面与上(下)底面的公共顶点 由三棱锥、四棱锥、五棱锥…… 截得的棱台分别叫作三棱台、四棱台、五棱台……
题型一 棱柱的结构特征
【例1】 下列说法正确的是( )
A.有两个面平行,其余各面都是四边形的几何体叫棱柱
B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱
C.各侧面都是正方形的四棱柱一定是正方体
D.九棱柱有9条侧棱,9个侧面,侧面均为平行四边形
解析 选项A,B都不正确,反例如图所示.选项C也不正确,上、下底面是全等的菱形,各侧面是全等的正方形的四棱柱不是正方体.根据棱柱的定义知选项D正确.
答案 D
规律方法 1.棱柱结构特征的辨析方法
(1)扣定义:判定一个几何体是否为棱柱的关键是棱柱的定义.
①看“面”,即观察这个多面体是否有两个互相平行的面,其余各面都是四边形;
②看“线”,即观察每相邻两个四边形的公共边是否平行.
(2)举反例:通过举反例,如与常见几何体或实物模型、图片等不吻合,给予排除.
2.棱柱概念的推广
(1)斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱.
(2)直棱柱:侧棱垂直于底面的棱柱叫做直棱柱.
(3)正棱柱:底面是正多边形的直棱柱叫做正棱柱.
(4)平行六面体:底面是平行四边形的四棱柱叫做平行六面体,即平行六面体的六个面都是平行四边形.
(5)长方体:底面是矩形的直棱柱叫做长方体.
(6)正方体:棱长都相等的长方体叫做正方体.
【训练1】 下列命题中,正确的是( )
A.棱柱中所有的侧棱都相交于一点
B.棱柱中互相平行的两个面叫做棱柱的底面
C.棱柱的侧面是平行四边形,而底面不是平行四边形
D.棱柱的侧棱相等,侧面是平行四边形
解析 A选项不符合棱柱的侧棱平行的特点;对于B选项,如图(1),构造四棱柱ABCD-A1B1C1D1,令四边形ABCD是梯形,可知面ABB1A1∥面DCC1D1,但这两个面不能作为棱柱的底面;选项C中,如图(2),底面ABCD可以是平行四边形;D选项说明了棱柱的特点,故选D.
答案 D
题型二 棱锥、棱台的结构特征
【例2】 (1)下列三种叙述,正确的有( )
①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;
②两个面平行且相似,其余各面都是梯形的多面体是棱台;
③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.
A.0个 B.1个 C.2个 D.3个
(2)下列说法中,正确的是( )
①棱锥的各个侧面都是三角形;
②四面体的任何一个面都可以作为棱锥的底面;
③棱锥的侧棱平行.
A.① B.①② C.② D.③
解析 (1)①中的平面不一定平行于底面,故①错误;②③可用反例去检验,如图所示,侧棱延长线不能相交于一点,故②③错.故选A.
(2)由棱锥的定义,知棱锥的各侧面都是三角形,故①正确;四面体就是由四个三角形所围成的几何体,因此以四面体的任何一个面作底面的几何体都是三棱锥,故②正确;棱锥的侧棱交于一点,故③错误.
答案 (1)A (2)B
规律方法 判断棱锥、棱台形状的两个方法
(1)举反例法:
结合棱锥、棱台的定义,举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.
(2)直接法:
棱锥 棱台
定底面 只有一个面是多边形,此面即为底面 两个互相平行的面,即为底面
看侧棱 相交于一点 延长后相交于一点
【训练2】 下列关于棱锥、棱台的说法:
①棱台的侧面一定不会是平行四边形;②由四个平面围成的封闭图形只能是三棱锥;③棱锥被平面截成的两部分不可能都是棱锥.
其中正确说法的序号是________.
解析 ①正确,棱台的侧面一定是梯形,而不是平行四边形;
②正确,由四个平面围成的封闭图形只能是三棱锥;
③错误,如图所示四棱锥被平面截成的两部分都是棱锥.
答案 ①②
题型三 空间几何体的平面展开图
【例3】 (1)画出如图所示的几何体的平面展开图(画出其中一种即可).
(2)长方体ABCD-A1B1C1D1中,AB=4,BC=3,BB1=5,一只蚂蚁从点A出发沿表面爬行到点C1,求蚂蚁爬行的最短路线长.
解 (1)平面展开图如图所示:
(2)沿长方体的一条棱剪开,使A和C1展在同一平面上,求线段AC1的长即可,有如图所示的三种剪法:
①若将C1D1剪开,使面AB1与面A1C1共面,可求得AC1=
==4.
②若将AD剪开,使面AC与面BC1共面,可求得AC1===3.
③若将CC1剪开,使面BC1与面AB1共面,可求得AC1==.
相比较可得蚂蚁爬行的最短路线长为.
规律方法 (1)绘制展开图:绘制多面体的平面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其平面展开图.
(2)由展开图复原几何体:若是给出多面体的平面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推.同一个几何体的平面展开图可能是不一样的,也就是说,一个多面体可有多个平面展开图.
(3)求从几何体的表面上一点,沿几何体表面运动到另一点,所走过的最短距离,常将几何体沿某条棱剪开,使两点展在一个平面上,转化为求平面上两点间的最短距离问题.
【训练3】 如图是三个几何体的侧面展开图,请问各是什么几何体?
解 ①为五棱柱;②为五棱锥;③为三棱台.
1.下列说法错误的是( )
A.多面体至少有四个面
B.六棱柱有6条侧棱,6个侧面,侧面为平行四边形
C.长方体、正方体都是棱柱
D.三棱柱的侧面为三角形
解析 由于三棱柱的侧面为平行四边形,故选项D错.
答案 D
2.下列说法正确的是________(填序号).
①底面是正多边形的棱锥为正棱锥;②各侧棱都相等的棱锥为正棱锥;③各侧面都是等腰三角形的棱锥为正棱锥;④各侧面都是全等的等腰三角形的棱锥是正棱锥;⑤底面是正多边形且各侧面全等的棱锥为正棱锥.
解析 由正棱锥的定义可知,①②③均不正确;而④不能保证这些全等的等腰三角形的腰长都作为侧棱长,故不正确;只有⑤符合正棱锥的定义,故正确.
答案 ⑤
3.下列几何体中,________是棱柱,________是棱锥,______是棱台(仅填相应序号).
解析 结合棱柱、棱锥和棱台的定义可知①③④是棱柱,⑥是棱锥,⑤是棱台.
答案 ①③④ ⑥ ⑤
4.对棱柱而言,下列说法正确的序号是________.
①棱柱中任意两个侧面都不可能互相平行;②所有的棱长都相等;③棱柱中至少有两个面的形状完全相同;④相邻两个面的交线叫做侧棱.
解析 ①错误,棱柱的侧面也可能有平行的面(如正方体);②错误,因为侧棱与底面上的棱长不一定相等;③正确,根据棱柱的特征知,棱柱中上下两个底面一定是全等的,棱柱中至少有两个面的形状完全相同;④错误,因为底面和侧面的交线不是侧棱.
答案 ③
棱柱、棱台、棱锥关系图
1 / 7