苏教版(2019)高中数学必修第二册 13.1.2_圆柱、圆锥、圆台和球_教学设计

文档属性

名称 苏教版(2019)高中数学必修第二册 13.1.2_圆柱、圆锥、圆台和球_教学设计
格式 docx
文件大小 778.7KB
资源类型 教案
版本资源 苏教版(2019)
科目 数学
更新时间 2022-12-13 21:48:03

图片预览

文档简介

第十三章 立体几何初步
13.1.2 圆柱、圆锥、圆台和球
立体几何是研究三维空间中物体的形状、大小和位置关系的一门数学学科,而三维空间是人们生存发展的现实空间.所以,学习立体几何对我们认识、理解现实世界,更好地生存与发展具有重要的意义.《立体几何初步》一章,是在义务教育阶段“空间与图形”课程的延续与发展,教材的编写力图凸显《普通高中数学课程标准》(以下简称《课程标准》)对立体几何的教学要求,通过直观感知、操作确认、思辩论证、度量计算等方法,以帮助学生实现逐步形成空间想像能力这一教学目的.
课程目标 学科素养
1.认识圆柱、圆锥、圆台的结构特征. 2.认识柱、锥、台、球及其复杂的空间图形的结构特征,并能运用这些特征描述现实生活中简单物体的结构. 在旋转体与简单组合体概念的形成中,经历由具体到抽象,由一般到特殊的过程,发展学生的数学抽象素养和直观想象素养.
1.教学重点:认识圆柱、圆锥、圆台的结构特征.
2.教学难点:能运用这些特征描述现实生活中简单物体的结构.
多媒体调试、讲义分发。
如图,观察下列实物图.
问题 (1)上述三个实物图抽象出的几何体与多面体有何不同?
(2)上述实物图抽象出的几何体中的曲面能否由某些平面图形旋转而成?
(3)如何形成上述几何体的曲面?
提示 (1)它们不是由平面多边形围成的.
(2)可以由某些平面图形旋转而成.
(3)上述几何体可由半圆、直角梯形、直角三角形以适当的一边所在直线为轴旋转而成.
1.圆柱、圆锥、圆台、球
旋转体 结构特征 图形 表示
圆柱 以矩形的一边所在直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体叫做圆柱.旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,平行于轴的边都叫做圆柱侧面的母线 圆柱用表示它的轴的字母表示,如图中的圆柱记作圆柱O′O
圆锥 以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转一周形成的面所围成的旋转体叫做圆锥 圆锥也用表示它的轴的字母表示,如图中的圆锥记作圆锥SO
圆台 用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台 圆台也用表示它的轴的字母表示,如图中的圆台记作圆台O′O
球 半圆以它的直径所在直线为旋转轴,旋转一周形成的曲面叫做球面,球面所围成的旋转体叫做球体,简称球.半圆的圆心叫做球的球心,连接球心和球面上任意一点的线段叫做球的半径;连接球面上两点并且经过球心的线段叫做球的直径 球常用表示球心的字母来表示,左图可表示为球O
题型一 旋转体的结构特征 
【例1】 给出下列命题:
①圆柱的母线与它的轴可以不平行;②圆锥的顶点、底面圆的圆心与圆锥底面圆周上任意一点这三点的连线都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是(  )
A.①② B.②③ C.①③ D.②④
解析 由圆柱、圆锥、圆台的定义及母线的性质可知②④正确,①③错误.
答案 D
规律方法 由简单旋转体判断问题的解题策略
(1)准确掌握圆柱、圆锥、圆台和球的生成过程及其特征性质是解决此类概念问题的关键.
(2)解题时要注意两个明确:
①明确由哪个平面图形旋转而成;
②明确旋转轴是哪条直线.
【训练1】 下列命题正确的是________(只填序号).
①以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥;
②以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;
③圆柱、圆锥、圆台的底面都是圆;
④以等腰三角形的底边上的高所在直线为旋转轴,其余各边旋转180°形成的曲面围成的几何体是圆锥;
⑤球面上四个不同的点一定不在同一平面内;
⑥球的半径是球面上任意一点和球心的连线段.
解析 ①以直角三角形的一条直角边所在直线为轴旋转一周才可以得到圆锥;②以直角梯形垂直于底边的一腰所在直线为轴旋转一周才可以得到圆台;③它们的底面为圆面;④正确;作球的一个截面,在截面的圆周上任意取四个不同的点,则这四点就在球面上,故⑤错误;根据球的半径定义,知⑥正确.
答案 ④⑥
题型二 简单组合体的结构特征
【例2】 指出图中三个几何体的构成.
解 图①中的几何体由一个圆锥和一个四棱柱组合而成,其中上面是圆锥,下面是四棱柱.
图②中的几何体由一个圆锥挖去一个四棱柱而得到,其中四棱柱内接于圆锥.
图③中的几何体由一个球挖去一个三棱锥而得到,其中三棱锥内接于球.
规律方法 判断组合体构成的方法
(1)判定实物图是由哪些简单几何体组成的问题时,首先要熟练掌握简单几何体的结构特征;其次要善于将复杂的组合体“分割”为几个简单的几何体.
(2)组合体是由简单几何体拼接或截去一部分构成的.要仔细观察组合体的构成,结合柱、锥、台、球的结构特征,先分割,后验证.
【训练2】 如图(1)、(2)所示的图形绕虚线旋转一周后形成的几何体分别是由哪些简单几何体组成的?
解 旋转后的图形如图所示.其中图①是由一个圆柱O1O2和两个圆台O2O3,O3O4组成的;图②是由一个圆锥O5O4,一个圆柱O3O4及一个圆台O1O3中挖去圆锥O2O1组成的.
题型三 旋转体的有关计算 
【例3】 已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同侧,且距离等于1,求这个球的半径.
解 如图,设这两个截面圆的半径分别为r1,r2,球心到截面的距离分别为d1,d2,球的半径为R,则
πr=5π,πr=8π,∴r=5,r=8,
又∵R2=r+d=r+d,
∴d-d=8-5=3,
即(d1-d2)(d1+d2)=3.又d1-d2=1,
∴解得
∴R===3,
即球的半径等于3.
规律方法 (1)旋转体中有关底面半径、母线、高的计算,可利用轴截面求解,即将立体问题平面化.
(2)利用球的截面,将立体问题转化为平面问题是解决球的有关问题的关键.
【训练3】 用一个平行于圆锥底面的平面截这个圆锥,截得的圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm,求圆台的母线长.
解 设圆台的母线长为l cm,截得圆台的上底面的半径为r cm.
根据题意,得圆台的下底面的半径为4r cm.
根据相似三角形的性质,得=.解得l=9.
所以圆台的母线长为9 cm.
1.下列几何体是台体的是(  )
解析 台体包括棱台和圆台两种,A的错误在于四条侧棱没有交于一点;B的错误在于截面与圆锥底面不平行;C是棱锥;结合圆台的定义可知D正确.
答案 D
2.过球面上任意两点A,B作大圆,可能的个数是(  )
A.有且只有一个 B.一个或无穷多个
C.无数个 D.以上均不正确
解析 当过A,B的直线经过球心时,经过A,B的截面所得的圆都是球的大圆,这时过A,B作球的大圆有无数个;当直线AB不经过球心O时,经过A,B,O的截面就是一个大圆,这时只能作出一个大圆.
答案 B
3.若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的母线长为________.
解析 如图所示,设等边三角形ABC为圆锥的轴截面,由题意知圆锥的母线长即为△ABC的边长,且S△ABC=AB2,∴=AB2,∴AB=2.
答案 2
4.如图,将直角梯形ABCD绕边AB所在的直线旋转一周,由此形成的几何体是由哪些简单几何体组成的?
解 画出形成的几何体如图所示.
由图可知,旋转得到的几何体是由一个圆柱和一个圆锥组成的.
圆柱、圆锥、圆台的关系如图所示.
2 / 6