第十三章 立体几何初步
13.1 基本立体图形
13.1.3 直观图的斜二测画法
一、选择题
1.关于斜二测画法所得直观图,以下说法正确的是( )
A.等腰三角形的直观图仍是等腰三角形
B.正方形的直观图为平行四边形
C.梯形的直观图不是梯形
D.正三角形的直观图一定为等腰三角形
2.在用斜二测画法画水平放置的△ABC时,若∠A的两边分别平行于x轴、y轴,则在直观图中∠A′等于( )
A.45° B.135°
C.90° D.45°或135°
3.已知一个正方形的直观图是一个平行四边形,其中有一边长为4,则此正方形的面积为( )
A.16 B.64
C.16或64 D.无法确定
4.如图所示,△A′B′C′是水平放置的△ABC的直观图,则在原△ABC的三边及中线AD中,最长的线段是( )
A.AB B.AD
C.BC D.AC
5.下面每个选项的2个边长为1的正△ABC的直观图不是全等三角形的一组是( )
二、填空题
6.利用斜二测画法得到:
①三角形的直观图是三角形;
②平行四边形的直观图是平行四边形;
③正方形的直观图是正方形;
④菱形的直观图是菱形.
以上结论中,正确的是________(填序号).
7.水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的实际长度为________.
8.如图所示,一个水平放置的正方形ABCO,它在直角坐标系xOy中,点B的坐标为(2,2),则用斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为________.
三、解答题
9.一个机器部件,它的下面是一个圆柱,上面是一个圆锥,并且圆锥的底面与圆柱的上底面重合,圆柱的底面直径为3 cm,高为3 cm,圆锥的高为3 cm,画出此机器部件的直观图.
10.如图,四边形O′A′B′C′是梯形OABC的直观图,其直观图面积为S,求梯形OABC的面积S′.
能力提升
11.如图,正方形O′A′B′C′的边长为1 cm,它是水平放置的一个平面图形的直观图,则原图形的周长是________.
12.如图所示,梯形ABCD中,AB∥CD,AB=4 cm,CD=2 cm,∠DAB=30°,AD=3 cm,试画出它的直观图.
创新猜想
13.(多选题)如图所示是斜二测画法画出的水平放置的三角形的直观图,D′为B′C′的中点,且A′D′∥y′轴,B′C′∥x′轴,那么在原平面图形ABC中( )
A.AB与AC相等
B.AD的长度大于AC的长度
C.AB的长度大于AD的长度
D.BC的长度大于AD的长度
14.(多填题)在如图所示的直观图中,四边形O′A′B′C′为菱形且边长为2 cm,则在平面直角坐标系中原四边形OABC为_______(填具体形状),其面积为______ cm2.
第十三章 立体几何初步
13.1 基本立体图形
13.1.3 直观图的斜二测画法答案
一、选择题
1.关于斜二测画法所得直观图,以下说法正确的是( )
A.等腰三角形的直观图仍是等腰三角形
B.正方形的直观图为平行四边形
C.梯形的直观图不是梯形
D.正三角形的直观图一定为等腰三角形
【解析】 由于直角在直观图中有的成为45°,有的成为135°;当线段与x轴平行时,在直观图中长度不变且仍与x轴平行,因此答案为B.
【答案】 B
2.在用斜二测画法画水平放置的△ABC时,若∠A的两边分别平行于x轴、y轴,则在直观图中∠A′等于( )
A.45° B.135°
C.90° D.45°或135°
【解析】 因∠A的两边分别平行于x轴、y轴,故∠A=90°,在直观图中,按斜二测画法规则知∠x′O′y′=45°或135°,即∠A′=45°或135°,故选D.
【答案】 D
3.已知一个正方形的直观图是一个平行四边形,其中有一边长为4,则此正方形的面积为( )
A.16 B.64
C.16或64 D.无法确定
【解析】 等于4的一边在原图形中可能等于4,也可能等于8,所以正方形的面积为16或64.
【答案】 C
4.如图所示,△A′B′C′是水平放置的△ABC的直观图,则在原△ABC的三边及中线AD中,最长的线段是( )
A.AB B.AD
C.BC D.AC
【解析】 还原△ABC,即可看出△ABC为直角三角形,故其斜边AC最长.
【答案】 D
5.下面每个选项的2个边长为1的正△ABC的直观图不是全等三角形的一组是( )
【解析】 可分别画出各组图形的直观图,观察可得结论.
【答案】 C
二、填空题
6.利用斜二测画法得到:
①三角形的直观图是三角形;
②平行四边形的直观图是平行四边形;
③正方形的直观图是正方形;
④菱形的直观图是菱形.
以上结论中,正确的是________(填序号).
【解析】 斜二测画法得到的图形与原图形中的线线相交、线线平行关系不会改变,因此三角形的直观图是三角形,平行四边形的直观图是平行四边形.
【答案】 ①②
7.水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的实际长度为________.
【解析】 由直观图知,原平面图形为直角三角形,且AC=A′C′=3,BC=2B′C′=4,计算得AB=5,所求中线长为2.5.
【答案】 2.5
8.如图所示,一个水平放置的正方形ABCO,它在直角坐标系xOy中,点B的坐标为(2,2),则用斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为________.
【解析】 画出直观图,则B′到x′轴的距离为·OA=OA=.
【答案】
三、解答题
9.一个机器部件,它的下面是一个圆柱,上面是一个圆锥,并且圆锥的底面与圆柱的上底面重合,圆柱的底面直径为3 cm,高为3 cm,圆锥的高为3 cm,画出此机器部件的直观图.
解 (1)如图①,画x轴、y轴、z轴,三轴相交于点O,使∠xOy=45°,∠xOz=90°.
(2)画圆柱的两底面.在xOy平面上画出底面圆O,使直径为3 cm,在z轴上截取OO′,使OO′=3 cm,过O′作Ox的平行线O′x′,Oy的平行线O′y′,利用O′x′与O′y′画出底面圆O′,使其直径为3 cm.
(3)画圆锥的顶点.在z轴上画出点P,使PO′等于圆锥的高3 cm.
(4)成图.连接A′A,B′B,PA′,PB′,擦去辅助线,将被遮挡的部分改为虚线,得到此几何体(机器部件)的直观图,如图②.
10.如图,四边形O′A′B′C′是梯形OABC的直观图,其直观图面积为S,求梯形OABC的面积S′.
解 设O′C′=h,则原梯形是一个直角梯形且高为2h.C′B′=CB,O′A′=OA.过C′作C′D′⊥O′A′于D′,则C′D′=h.
由题意知C′D′·(C′B′+O′A′)=S,即h(C′B′+O′A′)=S.
原直角梯形面积为
S′=·2h(CB+OA)=h(C′B′+O′A′)==2S.
即梯形OABC的面积为2S.
能力提升
11.如图,正方形O′A′B′C′的边长为1 cm,它是水平放置的一个平面图形的直观图,则原图形的周长是________.
【解析】 由题意正方形O′A′B′C′的边长为1,它是水平放置的一个平面图形的直观图,所以O′B′= cm,对应原图形平行四边形OABC的高为2 cm,
所以原图形中,OA=BC=1 cm,AB=OC==3 cm,
故原图形的周长为:2×(1+3)=8(cm).
【答案】 8 cm
12.如图所示,梯形ABCD中,AB∥CD,AB=4 cm,CD=2 cm,∠DAB=30°,AD=3 cm,试画出它的直观图.
解 画法:
(1)如图a所示,在梯形ABCD中,
以边AB所在的直线为x轴,点A为原点,
建立平面直角坐标系xOy.如图b所示,
画出对应的x′轴,y′轴,使∠x′O′y′=45°.
(2)在图a中,过D点作DE⊥x轴,垂足为E.在图b中,在x′轴上取A′B′=AB=4 cm,
A′E′=AE=≈2.598 cm;
过点E′过E′D′∥y′轴,
使E′D′=ED=×=0.75 cm;再过点D′作D′C′∥x′轴,且使D′C′=DC=2 cm.
(3)连接A′D′,B′C′,并擦去x′轴与y′轴及其他一些辅助线,如图c所示,则四边形A′B′C′D′就是所求作的直观图.
创新猜想
13.(多选题)如图所示是斜二测画法画出的水平放置的三角形的直观图,D′为B′C′的中点,且A′D′∥y′轴,B′C′∥x′轴,那么在原平面图形ABC中( )
A.AB与AC相等
B.AD的长度大于AC的长度
C.AB的长度大于AD的长度
D.BC的长度大于AD的长度
【解析】 由直观图易知A′D′∥y′轴,根据斜二测画法规则,在△ABC中有AD⊥BC,又AD为BC边上的中线,所以△ABC为等腰三角形,则AB与AC相等,且长度都大于AD的长度,但BC与AD的长度大小不确定,故选A,C.
【答案】 AC
14.(多填题)在如图所示的直观图中,四边形O′A′B′C′为菱形且边长为2 cm,则在平面直角坐标系中原四边形OABC为_______(填具体形状),其面积为______ cm2.
【解析】 由斜二测画法规则可知,在四边形OABC中,OA⊥OC,OA=O′A′=2 cm,OC=2O′C′=4 cm,所以四边形OABC是矩形,其面积为2×4=8(cm2).
【答案】 矩形 8
2 / 9