2022-2023学年度八年级勾股定理检测题
一、单选题
1.满足下列条件的,不是直角三角形的是( )
A. B.
C. D.
2.下列结论中,错误的有( )
①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;
②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠A=90°;
③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;
④若三角形的三边长之比为3:4:5,则该三角形是直角三角形;
A.0个 B.1个 C.2个 D.3个
3.已知a、b、c是三角形的三边长,若满足,则这个三角形的形状是( )
A.等腰三角形 B.等边三角形 C.锐角三角形 D.直角三角形
4.如图,在中,,,,点到的距离是( )
A. B. C. D.
5.将一根长24cm的筷子,置于底面直径为5cm、高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为,则的取值范围是( )
A. B.
C. D.
6.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度(滑轮上方的部分忽略不计)为( )
A.12 m B.13 m C.16 m D.17 m
7.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是( )
A.13cm B.2cm C. cm D.2cm
8.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )
A.0.7米 B.1.5米 C.2.2米 D.2.4米
二、填空题
9.一直角三角形的两边长分别为5和12,则第三边的长是_______.
10.我国古代数学著作《九章算术》中有这样一个问题:“今有池方一丈,葭(jiā)生其中央,出水一尺,引葭赴岸,适与岸齐问水深几何?”(注:丈、尺是长度单位,1丈=10尺)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.则水池里水的深度是_______________尺.
11.如图,已知在中,,,分别以,为直径作半圆,面积分别记为,,则+的值等于____.
12.在直线上依次摆着七个正方形(如图),已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积是S1,S2,S3,S4,则S1+S2-S3-S4=_________.
三、解答题
13.省道S226在我县境内某路段实行限速,机动车辆行驶速度不得超过60km/h,如图,一辆小汽车在这段路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方36m的C处,过了3s后,测得小汽车与车速检测仪间距离为60m,这辆小汽车超速了吗?
14.我们古代数学中有这样一道数学题:有一棵枯树直立在地上,树高2丈,粗3尺,有一根藤条从树根处缠绕而上,缠绕7周到达树顶,(如图所示),则这根藤条有多长 (注:枯树可以看成圆柱.树粗3尺,指的是:圆柱底面周长为3尺,1丈=10尺)
15.台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力.如图所示,有一台风中心沿东西方向由A向B移动,已知点C为一海港,且点C与直线上的两点A,B的距离分别为:,以台风中心为圆心周围以内为受影响区域.
(1)请计算说明海港C会受到台风的影响;
(2)若台风的速度为,则台风影响该海港持续的时间有多长?
16.如图,点是正方形内一点,将绕点顺时针旋转到的位置,若,求的度数.
17.如图,河边有A,B两个村庄,A村距河边10 m,B村距河边30 m,两村平行于河边方向的水平距离为30 m,现要在河边建一抽水站,需铺设管道抽水到A村和B村.
(1)求铺设管道的最短长度是多少,请画图说明;
(2)若铺设管道每米需要500元,则最低费用为多少?
18.如图,在由6个大小相同的小正方形组成的方格中,设每个小正方形的边长均为1.
(1)如图①,,,是三个格点(即小正方形的顶点),判断与的位置关系,并说明理由;
(2)如图②,连接三格和两格的对角线,求的度数(要求:画出示意图,并写出证明过程).
19.如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是多少?
20.如图所示,是一个三级台阶,它的每一级的长、宽、高分别为55cm,10cm,6cm,点和点是这个台阶的两个相对的端点,点处有一只蚂蚁,那么这只蚂蚁从点爬到点的最短路程是多少?
21.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和是多少?
22.如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作,且BQ=BP,连接CQ.若,连接PQ,试判断的形状,并说明理由.
23.如图,将边长为a与b、对角线长为c的长方形纸片ABCD,绕点C顺时针旋转90°得到长方形FGCE,连接AF.通过用不同方法计算梯形ABEF的面积可验证勾股定理,请你写出验证的过程.
24.如图,已知在四边形ABCD中,∠A=90°,AB=2cm,AD=cm,CD=5cm,BC=4cm,求四边形ABCD的面积.
25.如图,在四边形ABCD中,AB=BC=2,CD=3,AD=1,且∠ABC=90°,试求∠A的度数.
26.铁路上A,B两站(视为直线上的两点)相距50km,C,D为两村庄(视为两个点),DA⊥AB于点A,CB⊥AB于点B(如图).已知DA=20km,CB=10km,现在要在铁路AB上建一个土特产收购站E,使得C,D两村庄到收购站E的直线距离相等,请你设计出收购站的位置,并计算出收购站E到A站的距离.
27.如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米.
(1)这个梯子底端离墙有多少米?
(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?
28.课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.
(1)求证:△ADC≌△CEB;
(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).
29.如图,甲乙两船从港口A同时出发,甲船以16海里/时速度向北偏东40°航行,乙船向南偏东50°航行,3小时后,甲船到达C岛,乙船到达B岛.若C、B两岛相距60海里,问乙船的航速是多少.
30.如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm.
求:(1)FC的长;(2)EF的长.
31.我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.
(1)求出空地ABCD的面积.
(2)若每种植1平方米草皮需要200元,问总共需投入多少元?
32.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.
(1)求证:△ABG≌△AFG;
(2)求BG的长.
如图所示,某住宅社区在相邻两楼之间修建一个上方是一个半圆,下方是长方形的仿古通道,现有一辆卡车装满家具后,高4米,宽2.8米,求这辆送家具的卡车能否通过这个通道.
34.如图,将矩形ABCD沿对角线AC翻折,点B落在点E处,FC交AD于F.
(1)求证:△AFE≌△CDF;
(2)若AB=4,BC=8,求图中阴影部分的面积.
35.如图,,两个工厂位于一段直线形河道的异侧,工厂至河道的距离为,工厂至河道的距离为,经测量河道上、两地间的距离为,现准备在河边某处(河宽不计)修一个污水处理厂.
(1)设,请用的代数式表示的长______;(结果保留根号)
(2)为了使,两厂到污水处理厂的排污管道之和最短,请在图中画出污水厂位置,并求出排污管道最短长度?
(3)通过以上的解答,充分展开联想,运用数形结合思想,请你求出的最小值为多少?
36.如图,已知△ABC中,∠B=90°,AB=8 cm,BC=6 cm,P,Q是△ABC边上的两个动点,点P从点A开始沿A→B方向运动,且速度为1 cm,点Q从点B开始沿B→C方向运动,且速度为2 cm/s,它们同时出发,设运动的时间为t s.
(1)运动几秒时,△APC是等腰三角形?
(2)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.
37.如图1,Rt△ABC中,∠ACB=90.,直角边AC在射线OP上,直角顶点C与射线端点0重合,AC=b,BC=a,且满足.
(1)求a,b的值;
(2)如图2,向右匀速移动Rt△ABC,在移动的过程中Rt△ABC的直角边AC在射线OP上匀速向右运动,移动的速度为1个单位/秒,移动的时间为t秒,连接OB.
①若△OAB为等腰三角形,求t的值;
②Rt△ABC在移动的过程中,能否使△OAB为直角三角形?若能,求出t的值:若不能,说明理由.
38.阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为: 其中m>n>0,m,n是互质的奇数.
应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.
39.如图,公路MN和公路PQ在点P处交会,公路PQ上点A处有学校,点A到公路MN的距离为80m,现有一拖拉机在公路MN上以18km/h的速度沿PN方向行驶,拖拉机行驶时周围100m以内都会受到噪音的影响,试问该校受影响的时间为多长?
中小学教育资源及组卷应用平台
试卷第1页,共3页
21世纪教育网(www.21cnjy.com)
参考答案:
1.C【分析】根据三角形内角和定理、勾股定理的逆定理对各个选项分别进行计算即可.
【详解】A. ,则a2+c2=b2 ,△ABC是直角三角形,故A正确,不符合题意;
B. 52+122=132,△ABC是直角三角形,故B正确,不符合题意;
C.∠A:∠B:∠C=3:4:5,
设∠A、∠B、∠C分别为3x、4x、5x,
则3x+4x+5x=180°,
解得,x=15°,
则∠A、∠B、∠C分别为45°,60°,75°,
△ABC不是直角三角形;故C选项错误,符合题意;
D. ∠A-∠B=∠C,则∠A=∠B+∠C,
∠A=90°,
△ABC是直角三角形,故D正确,不符合题意;
故选C.
【点睛】本题考查的是三角形内角和定理、勾股定理的逆定理的应用,勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
2.C【分析】根据勾股定理可得①中第三条边长为5或,根据勾股定理逆定理可得②中应该是∠C=90°,根据三角形内角和定理计算出∠C=90°,可得③正确,再根据勾股定理逆定理可得④正确.
【详解】①Rt△ABC中,已知两边分别为3和4,则第三条边长为5,说法错误,第三条边长为5或.
②△ABC的三边长分别为AB,BC,AC,若+=,则∠A=90°,说法错误,应该是∠C=90°.
③△ABC中,若∠A:∠B:∠C=1:5:6,此时∠C=90°,则这个三角形是一个直角三角形,说法正确.
④若三角形的三边比为3:4:5,则该三角形是直角三角形,说法正确.
故选C.
【点睛】本题考查了直角三角形的判定,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
3.D【分析】首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,在根据勾股定理的逆定理判断其形状是直角三角形.
【详解】∵(a-6)2≥0,≥0,|c-10|≥0,
∴a-6=0,b-8=0,c-10=0,
解得:a=6,b=8,c=10,
∵62+82=36+64=100=102,
∴这个三角形是直角三角形.
故选D.
【点睛】本题主要考查了非负数的性质与勾股定理的逆定理,此类题目在考试中经常出现,是考试的重点.
4.A【分析】根据勾股定理求出AB,再根据三角形面积关系求CD.
【详解】在中,,,,
所以AB=
因为AC BC=AB CD
所以CD=
故选A
【点睛】考核知识点:勾股定理的运用.利用面积关系求斜边上的高是关键.
5.C【分析】观察图形,找出图中的直角三角形,利用勾股定理解答即可.
【详解】首先根据圆柱的高,知筷子在杯内的最小长度是12cm,则在杯外的最大长度是24-12=12;
再根据勾股定理求得筷子在杯内的最大长度是(如图)AC=
=13,则在杯外的最小长度是24-13=11cm.
所以h的取值范围是11≤h≤12.
故选C
【点睛】考核知识点:勾股定理运用.把问题转化为直角三角形模型是关键.
6.D【分析】根据题意画出示意图,设旗杆高度为x,可得AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.
【详解】解:设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,
在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,
解得:x=17,
即旗杆的高度为17米.
故选D.
【点睛】本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.
7.A【详解】试题解析:如图:
∵高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,
此时蚂蚁正好在容器外壁,离容器上沿3cm与饭粒相对的点A处,
∴A′D=5cm,BD=12-3+AE=12cm,
∴将容器侧面展开,作A关于EF的对称点A′,
连接A′B,则A′B即为最短距离,
A′B=(cm).
故选A.
考点:平面展开---最短路径问题
8.C【分析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.
【详解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,
∴BD2+22=6.25,
∴BD2=2.25,
∵BD>0,
∴BD=1.5米,
∴CD=BC+BD=0.7+1.5=2.2米.
故选:C.
【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.
9.13或【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边12既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即12是斜边或直角边的两种情况,然后利用勾股定理求解.
【详解】设第三边为x,
(1)若12是直角边,则第三边x是斜边,
由勾股定理得:52+122=x2
∴x=13(负值舍去)
(2)若12是斜边,则第三边x为直角边,
由勾股定理得:52+x2=122
∴x=(负值舍去)
∴第三边的长为13或.
故答案为:13或.
【点睛】本题考查了利用勾股定理解直角三角形的能力,解题的关键是掌握当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.
10.12【分析】首先设水池的深度为x尺,则这根芦苇的长度为(x+1)尺,根据勾股定理可得方程x2+52=(x+1)2即可.
【详解】设这个水池深x尺,
由题意得,x2+52=(x+1)2,
解得:x=12
答:这个水池深12尺.
故答案为:12.
【点睛】此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.
11.2π【分析】首先把与的表达式列出来,然后求和时根据勾股定理可得到与斜边AB平方的关系,然后得到+的值.
【详解】,,
则+=.
在直角三角形ABC中有:,
则+=.
故答案为:2π.
【点睛】本题考查了勾股定理的综合应用,解题关键在于通过勾股定理建立好两个半圆的面积与斜边的联系.
12.-2【分析】观察图形根据勾股定理的几何意义,边的平方的几何意义就是以该边为边的正方形的面积.
【详解】解:如图
∵AB=BE,∠ACB=∠BDE=90°,
∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,
∴∠BAC=∠EBD,
∵在△ABC与△BDE中,
∴△ABC≌△BDE(AAS),
∴BC=ED,
∵AB2=AC2+BC2,
∴AB2=AC2+ED2=S1+S2,
即S1+S2=1,
同理S3+S4=3.
故S1+S2-S3-S4=(S1+S2)-(S3+S4)=1-3=-2.
故答案为-2.
【点睛】本题考查了全等三角形的判定以及性质和勾股定理,一个直角三角形的斜边的平方等于另外两边的平方和.边的平方的几何意义就是以该边为边的正方形的面积.
13.这辆小汽车没有超速.【详解】试题分析:本题求小汽车是否超速,其实就是求BC的距离,直角三角形ABC中,有斜边AB的长,有直角边AC的长,那么BC的长就很容易求得,根据小汽车用2s行驶的路程为BC,那么可求出小汽车的速度,然后再判断是否超速了.
解:在Rt△ABC中,AC=36m,AB=60m;
据勾股定理可得:
BC===48(m)
∴小汽车的速度为v==16(m/s)=16×3.6(km/h)=57.6(km/h);
∵60(km/h)>57.6(km/h);
∴这辆小汽车没有超速行驶.
答:这辆小汽车没有超速、.
14.这根藤条有29尺.【分析】由于树可以近似看作圆柱,藤条绕树缠绕,我们可以按如图所示的方法,转化为平面图形利用勾股定理来解决.
【详解】如图所示,在RtΔABC中,
由勾股定理得AB2=BC2+AC2,
因为BC=20,AC=3×7=21,
所以AB2=202+212=841,
所以AB=29,
所以这根藤条有29尺.
【点睛】本题考查了勾股定理的应用,能够把实际问题抽象成数学问题是解题的关键.
15.(1)计算见解析;(2)台风影响该海港持续的时间为7小时【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,进而利用三角形面积得出CD的长,进而得出海港C是否受台风影响;
(2)利用勾股定理得出ED以及EF的长,进而得出台风影响该海港持续的时间.
【详解】解:(1)如图,过点C作于点D
∵
∴
∴是直角三角形
∴
∴
∴
∵以台风中心为圆心周围以内为受影响区域
∴海港C会受台风影响;
(2)当时,
台风在上运动期间会影响海港C
在中
在中
∴
∵台风的速度为20千米/小时
∴(小时)
答:台风影响该海港持续的时间为7小时.
【点睛】本题考查了勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.
16.【分析】连接EE`,如图,根据旋转的性质得BE=B E'=2,AE=C E'=1,∠EBE`=90°,则可判断△BEE`为等腰直角三角形,根据等腰直角三角形的性质得EE`= BE=2,∠BE`E=45°,在△CE E'中,由于CE` +E E'=CE,根据勾股定理的逆定理得到△CEE`为直角三角形,即∠EE`C=90°,然后利用∠B E'C=∠B E'E+∠C E'E求解
【详解】连接EE`,如图,
∵△ABE绕点B顺时针旋转90°得到△CBE`
∴BE=BE'=2,AE=CE'=1,∠EB E'=90°
∴△BE E'为等腰直角三角形
∴E E'=BE=2,∠BE'E=45°
在△CEE`中,CE=3,C E'=1,EE'=2,
∵1+ (2)=3
∴CE+E E'= CE
∴△CE E'为直角三角形
∴∠E E'C=90°
∴∠B E'C=∠B E'E+∠C E'E=135°
【点睛】此题考查了等腰直角三角形,勾股定理的逆定理,正方形的性质和旋转的性质,利用勾股定理证明三角形是直角三角形是解题关键
17.(1)铺设管道的最短长度是50m;(2)最低费用为25000元.【分析】(1)根据轴对称性质,过点A作AC⊥CE于点C,延长AC至点D,使CD=AC,
连接BD,交河边于点E,连接AE,则抽水站应建在点E处,可使铺设的管道最短,最短长度为AE+BE,即BD的长.过点B作BF⊥AC于点F,由题意得:AC=10 m,CF=30 m,BF=30 m,
CD=AC=10 m,DF=10+30=40(m),在Rt△BDF中,根据勾股定理可得:BD2=302+402=502,计算可得:BD=50(m),
(2)将最短距离乘以铺管道每米的单价可进行计算,最低费用为50×500=25000(元).
【详解】如图,过点A作AC⊥CE于点C,延长AC至点D,使CD=AC,
连接BD,交河边于点E,
连接AE,则抽水站应建在点E处,可使铺设的管道最短,最短长度为AE+BE,即BD的长.
过点B作BF⊥AC于点F,
由题意得:AC=10 m,CF=30 m,BF=30 m,
所以CD=AC=10 m,
所以DF=10+30=40(m),
在Rt△BDF中,BD2=302+402=502,
所以BD=50(m),
即铺设管道的最短长度是50 m.
(2)最低费用为50×500=25000(元).
【点睛】本题主要对称性质和勾股定理的应用,解决本题的关键是要熟练掌握利用轴对称性质和勾股定理解决实际问题的方法.
18.(1),理由见解析;(2),理由见解析.【分析】(1)连接AC,再利用勾股定理列式求出AB2、BC2、AC2,然后利用勾股定理逆定理解答;
(2)根据勾股定理的逆定理判定△ABC是等腰直角三角形,根据全等三角形的判定和性质,可得结果.
【详解】解:(1),
理由:如图①,连接,
由勾股定理可得,,,
所以,
所以是直角三角形且,
所以,
(2).
理由:如图②,连接AB 、BC,
由勾股定理得,
,
,
所以,
所以是直角三角形且.
又因为,所以是等腰直角三角形,
∴∠CAB=45°,
在△ABE和△FCD中,
,
∴△ABE≌△FCD(SAS),
∴∠BAD=∠β,
∴∠α+∠β=∠CAD+∠BAD=45°.
【点睛】本题考查了勾股定理、勾股定理逆定理、等腰直角三角形的判定与性质,以及全等三角形的判定与性质,熟练掌握网格结构以及勾股定理和逆定理是解题的关键.
19.从点A爬到点B的最短路程是10厘米.【分析】根据题意画出圆柱的侧面展开图,利用勾股定理求解即可.
【详解】圆柱的侧面展开图如图所示.
∵圆柱的底面半径为cm,高为8cm,∴AD=6cm,BD=8cm,∴AB==10(cm).
答:从点A爬到点B的最短路程是10厘米.
【点睛】本题考查的是平面展开﹣最短路径问题,此类问题应先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.
20.73cm【分析】首先把楼梯展开得到平面几何图,根据“两点之间,线段最短”得到蚂蚁所走的最短路线为AB,则问题是求AB的长,根据已知数据得出AC、BC的长,再利用勾股定理求出AB的长,即可完成解答.
【详解】解:如图所示,将这个台阶展开成一个平面图形,则蚂蚁爬行的最短路程就是线段的长.
在中,,.
由勾股定理,得.所以.
因此,蚂蚁从点爬到点的最短路程是73cm.
【点睛】此题考查勾股定理的应用,把立体几何图中的问题转化为平面几何图中的问题是解题的关键.
21.49cm2.【分析】根据勾股定理有S正方形2+S正方形3=S正方形1,S正方形C+S正方形D=S正方形3,S正方形A+S正方形B=S正方形2,等量代换即可求四个小正方形的面积之和.
【详解】解:如图,根据勾股定理可知,
S正方形2+S正方形3=S正方形1,
S正方形C+S正方形D=S正方形3,
S正方形A+S正方形B=S正方形2,
∴S正方形C+S正方形D+S正方形A+S正方形B=S正方形2+S正方形3=S正方形1=62=49(cm2).
故答案是:49cm2.
【点睛】本题考查了勾股定理的几何意义,关键是掌握两直角边的平方和等于斜边的平方.
22.是直角三角形,理由详见解析【分析】先利用SAS证明△ABP≌△CBQ,得到AP=CQ;设PA=3a,PB=4a,PC=5a,由已知可判定△PBQ为正三角形,从而可得PQ=4a,再根据勾股定理的逆定理即可判定△PQC是直角三角形.
【详解】解:是直角三角形. 理由如下:
在与中,∵,,,
∴.
∴.
∴.
∵,
∴设,,
在中,由于,且,
∴为等边三角形.
∴.
在中,∵,
∴为直角三角形.
【点睛】此题考查了等边三角形的性质、勾股定理逆定理和全等三角形的判定与性质,解题的关键是通过证明得出AP=CQ.
23.见解析【分析】根据S梯形ABEF=S△ABC+S△CEF+S△ACF,利用三角形以及梯形的面积公式即可证明.
【详解】证明:∵S梯形ABEF=(EF+AB) BE=(a+b) (a+b)=(a+b)2,
∵Rt△CDA≌Rt△CGF,
∴∠ACD=∠CFG,
∵∠CFG+∠GCF=90°,
∴∠ACD+∠GCF=90°,
即∠ACF=90°,
∵S梯形ABEF=S△ABC+S△CEF+S△ACF,
∴S梯形ABEF=ab+ab+c2,
∴(a+b)2=ab+ab+c2
∴a2+2ab+b2=2ab+c2,
∴a2+b2=c2.
考点:勾股定理的证明.
24.(6+)cm2.【详解】试题分析:如图,连接BD,根据勾股定理可得DB==3cm,然后根据勾股定理的逆定理,可得△BDC是直角三角形,∠DBC=90°,再根据三角形的面积公式求出四边形的面积.
试题解析:如图,连接BD,
在△ADB中,∠A=90°,AB=2cm,AD=cm,
根据勾股定理可得DB==3cm,
由BD2=9,CD2=25,BC2=16,
可得△BDC是直角三角形,∠DBC=90°,可
所以三角形的面积公式知四边形的面积为=(6+)cm2.
点睛:此题考查了勾股定理及逆定理,熟练掌握勾股定理及逆定理是解本题的关键.
25.135°.【详解】解:连接AC,
∵AB=BC=2,且∠ABC=90°,
∴AC=,且∠CAB=45°,
又∵AD=1,CD=3,
∴AD2+AC2=CD2,
∴∠CAD=90°,
∴∠A=∠CAD+∠CAB=135°.
26.收购站E到A站的距离为22km【详解】分析:连接CD,并作线段CD的垂直平分线,垂直平分线到端点距离相等,再利用勾股定理求EA长.
点睛:
如图,连接CD,并作线段CD的垂直平分线,与AB相交于点E,点E即为所建土特产收购站的地点.
连接DE,CE ,设AE=x km, 则BE=(50-x) km ,
在Rt△ADE中,,
∴ ,
在Rt△BCE中, ,
∴,
又DE=CE, ∴ ,
解得x=22 .
∴收购站E到A站的距离为22km.
点睛:
勾股定理:在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方.
27.(1)7米;(2)不是【分析】(1)利用勾股定理直接求出边长即可;
(2)梯子的顶端下滑了4米,则米,利用勾股定理求出b的值,判断是否梯子的底部在水平方向也滑动了4米.
【详解】(1)如图,
由题意得此时a=24米,c=25米,由勾股定理得,
∴(米);
(2)不是,
如果梯子的顶端下滑了4米,此时米,米,
由勾股定理,(米),
(米),
即梯子的底部在水平方向滑动了8米.
【点睛】本题考查勾股定理的应用,解题的关键是掌握用勾股定理解直角三角形的方法.
28.(1)证明见解析;(2)5cm.【分析】(1)根据题意可知AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,从而得到结论;
(2)根据题意得:AD=4a,BE=3a,根据全等可得DC=BE=3a,由勾股定理可得(4a)2+(3a)2=252,再解即可.
【详解】解:(1)根据题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,
∴∠ADC=∠CEB=90°,
∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,
∴∠BCE=∠DAC,
在△ADC和△CEB中,
,
∴△ADC≌△CEB(AAS);
(2)由题意得:AD=4a,BE=3a,
由(1)得:△ADC≌△CEB,
∴DC=BE=3a,
在Rt△ACD中:AD2+CD2=AC2,
∴(4a)2+(3a)2=252,
∵a>0,
解得a=5,
答:砌墙砖块的厚度a为5cm.
【点睛】本题考查了三角形全等的判定,余角的性质和勾股定理,其中熟练掌握三角形全等的判定方法和勾股定理是解题关键.
29.12海里/h【分析】首先理解方位角的概念,根据所给的方位角得到∠CAB=90°.根据勾股定理求得乙船所走的路程,再根据速度=路程÷时间,计算即可.
【详解】解:根据题意,得∠CAB=180°-40°-50°=90°,
∵AC=16×3=48(海里),BC=60海里,
∴在直角三角形ABC中,
根据勾股定理得:AB==36(海里).
则乙船的速度是36÷3=12海里/时.
【点睛】本题考查了方向角及勾股定理的应用,解题的关键是构建直角三角形.
30.(1)4cm;(2)5cm.【分析】(1)由于△ADE翻折得到△AEF,所以可得AF=AD,则在Rt△ABF中,由勾股定理即可得出结论;
(2)由于EF=DE,可设EF的长为x.在Rt△EFC中,利用勾股定理即可得出结论.
【详解】(1)由题意可得:AF=AD=10cm.在Rt△ABF中,∵AB=8 cm,∴BF=6cm,∴FC=BC﹣BF=10﹣6=4(cm).
(2)由题意可得:EF=DE,可设DE的长为x,则在Rt△EFC中,(8﹣x)2+42=x2,解得:x=5,即EF的长为5cm.
【点睛】本题考查了矩形的性质以及翻折的问题,能够熟练运用矩形的性质求解一些简答的问题.
31.(1)36;(2)7200元.【详解】分析:(1)连接BD.在Rt△ABD中可求得BD的长,由BD、CD、BC的长度关系可得△DBC为直角三角形,DC为斜边;由四边形ABCD由Rt△ABD和Rt△DBC构成,则容易求解;
(2)根据总费用=面积×单价解答即可.
详解:(1)连接BD.
在Rt△ABD中,BD2=AB2+AD2=32+42=52.
在△CBD中,CD2=132,BC2=122,而122+52=132,即BC2+BD2=CD2,
∴∠DBC=90°,
S四边形ABCD=S△BAD+S△DBC= AD AB+DB BC=×4×3+×12×5=36.
(2)需费用36×200=7200(元).
答:总共需投入7200元.
【点睛】本题考查了勾股定理及逆定理的应用,通过勾股定理由边与边的关系也可证明直角三角形,这样解题较为简单.
32.(1)证明见解析;(2)2【分析】(1)根据正方形的性质得到AD=AB,∠B=∠D=90°,根据折叠的性质可得AD=AF,∠AFE=∠D=90°,从而得到∠AFG=∠B=90°,AB=AF,结合AG=AG得到三角形全等;
(2)根据全等得到BG=FG,设BG=FG=x,则CG=6-x,根据E为中点得到CE=EF=DE=3,则EG=3+x,根据勾股定理得出x的值.
【详解】(1)∵四边形ABCD是正方形,
∴∠B=∠D=90°,AD=AB,
由折叠的性质可知AD=AF,∠AFE=∠D=90°,
∴∠AFG=90°,AB=AF,
∴∠AFG=∠B,
又AG=AG,
∴△ABG≌△AFG;
(2)、∵△ABG≌△AFG,
∴BG=FG,
设BG=FG=,则GC=,
∵E为CD的中点,
∴CE=EF=DE=3,
∴EG=,
∴, 解得,
∴BG=2.
33.卡车可以通过.【分析】卡车能否通过,关键是车高4米与AC的比较,BC为2.6米,只需求AB,在直角三角形OAB中,半径OA为2米,车宽的一半为DC=OB=1.4米,运用勾股定理求出AB即可.
【详解】过直径的中点O作直径的垂线,交下底边于点D,如图所示,
在RtΔABO中,由题意知OA=2,DC=OB=1.4,
所以AB2=22-1.42=2.04,
因为4-2.6=1.4,1.42=1.96,2.04>1.96,
所以卡车可以通过.
【点睛】本题考查了勾股定理的应用,把本题转化为直角三角形利用勾股定理进行解答是关键.
34.(1)证明见解析;(2)10.【详解】试题分析:(1)根据矩形的性质得到AB=CD,∠B=∠D=90°,根据折叠的性质得到∠E=∠B,AB=AE,根据全等三角形的判定定理即可得到结论;
(2)根据全等三角形的性质得到AF=CF,EF=DF,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论.
试题解析:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵将矩形ABCD沿对角线AC翻折,点B落在点E处,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF与△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;
(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴图中阴影部分的面积=S△ACE﹣S△AEF=×4×8﹣×4×3=10.
点睛:本题考查了翻折变换﹣折叠的性质,熟练掌握折叠的性质是解题的关键.
35.(1)+;
(2)污水厂位置见解析,排污管道最短长度为10km;
(3)13
【分析】(1)依据ED=x,AC⊥CD、BD⊥CD,故根据勾股定理可用x表示出AE+BE的长;
(2)根据两点之间线段最短可知连接AB与CD的交点就是污水处理厂E的位置.过点B作BF⊥AC于F,构造出直角三角形,利用勾股定理求出AB的长;
(3)根据AE+BE=+=AB=10,可猜想所求代数式的值为13.
(1)
解:在Rt△ACE和Rt△BDE中,根据勾股定理可得AE=,BE=,
∴AE+BE=+;
(2)
解:根据两点之间线段最短可知,连接AB与CD的交点就是污水处理厂E的位置,如图:
过点B作BF⊥AC于F,则有BF=CD=8,BD=CF=1,
∴AF=AC+CF=6,
在Rt△ABF中,BA===10,
∴排污管道最短长度10km;
(3)
解:根据以上推理,可作出下图:
设ED=x,AC=3,DB=2,CD=12.当A、E、B共线时求出AB的值即为原式最小值.
当A、E、B共线时,==13,
即其最小值为13.
故答案为:13.
【点睛】本题考查了最短路线问题,综合利用了勾股定理,及用数形结合的方法求代数式的值的方法,利用两点之间线段最短是解决问题的关键.
36.(1)运动s时,△APC是等腰三角形.(2)当运动时间为5.5 s 或6 s 或6.6 s时,△BCQ为等腰三角形.【分析】(1)根据题意得,AP=PC,列方程,求解即可;
(2)分BQ=BC,CQ=BC和BQ=CQ三种情况分别讨论得到关于t的方程,求出t即可.
【详解】(1)由题意可知AP=t,PC=
∵AP=PC,
∴t=,
解得,t=,
∴出发秒后△APC能形成等腰三角形;
(2)在△ABC中,由勾股定理可求得AC=10,
当点Q在AC上时,AQ=BC+AC-2t=16-2t,所以CQ=AC-AQ=10-(16-2t)=2t-6,
当BQ=BC=6时,如图1,过B作BD⊥AC,则CD=CQ=t-3,在Rt△ABC中,可求得BD=,
在Rt△BCD中,由勾股定理可得BC2=BD2+CD2,即62=()2+(t-3)2,
解得t=或t=-<0(舍去);
当CQ=BC=6时,则2t-6=6,解得t=6,
当CQ=BQ时,则∠C=∠QBC,
∴∠C+∠A=∠CBQ+∠QBA,
∴∠A=∠QBA,
∴QB=QA,
∴CQ=AC=5,即2t-6=5,解得t=5.5,
综上可知当△BCQ为等腰三角形时,t=或t=6或t=5.5.
【点睛】本题主要考查等腰三角形的判定和性质,掌握等腰三角形的两腰相等是解题的关键,利用t表示出线段的长度,化动为静是解决这类问题的常用思路.
37.(1)a=3,b=4(2)①t=4或t=1;②能.t=.【分析】(1)根据两个非负数的和为零则每一个数都为零,得出b-4=0 ,a-3=0 ,求解即可得出a,b的值;
(2) ①首先根据勾股定理算出AB的长及用含t的式子表示出OA,OB2 ,然后分三类讨论:当OB=AB时;当AB=OA时 ;当OB=OA时 ;一一列出方程求解即可得出t的值; ②能.由于t>0,点C在OP上,∠ACB = 90,故只能是∠OBA=90°,根据勾股定理得出关于t的方程求出t的值即可.
【详解】(1)解:∵,, 足,
∴,
∴a=3,b=4
(2)解:①∵AC=4,BC=3,
∴AB==5,
∵OC=t
∴OB2=t2+32=t2+9,OA=t+4,
当OB=AB时,t2+9=25,解得t=4或t=﹣4(舍去);
当AB=OA时,5=t+4,解得t=1;
当OB=OA时,t2+9=(t+4)2 , 解得t=-(舍去).
综上所述,t=4或t=1;
②能.
∵t>0,点C在OP上,∠ACB
∴只能是∠OBA=90°,
∴OB2+AB2=OA2 , 即t2+9+25=(t+4)2 , 解得t=.
∴Rt△ABC在移动的过程中,能使△OAB为直角三角形,此时t=.
【点睛】本题考查了非负数的性质,勾股定理的应用,等腰三角形的定义及分类讨论的数学思想.掌握非负数的性质是解(1)的关键,掌握勾股定理及分类讨论的数学思想是解(2)的关键.
38.12,13或3,4.【详解】试题分析:由n=1,得到a= (m2﹣1)①,b=m②,c=(m2+1)③,根据直角三角形有一边长为5,分情况,列方程即可得到结论.
试题解析:当n=1,a=(m2﹣1)①,b=m②,c=(m2+1)③,
∵直角三角形有一边长为5,
∴Ⅰ、当a=5时,(m2﹣1)=5,解得:m=±(舍去),
Ⅱ、当b=5时,即m=5,代入①③得,a=12,c=13,
Ⅲ、当c=5时,(m2+1)=5,解得:m=±3,
∵m>0,
∴m=3,代入①②得,a=4,b=3,
综上所述,直角三角形的另外两条边长分别为12,13或3,4.
39.24s.【详解】试题分析:设拖拉机开到C处刚好开始受到影响,行驶到D处时结束,在Rt△ACB中求出CB,继而得出CD,再由拖拉机的速度可得出所需时间.
试题解析:设拖拉机开到C处刚好开始受到影响,行驶到D处时结束了噪声的影响.
则有CA=DA=100m,
在Rt△ABC中,CB==60(m),
∴CD=2CB=120m,
∵18km/h=18000m/3600s=5m/s,
∴该校受影响的时间为:120÷5=24(s).
答:该校受影响拖拉机产生的噪声的影响时间为24秒.
答案第1页,共2页