人教版(2019)高中物理必修 第三章 相互作用—力 课时学案

文档属性

名称 人教版(2019)高中物理必修 第三章 相互作用—力 课时学案
格式 zip
文件大小 4.0MB
资源类型 教案
版本资源 人教版(2019)
科目 物理
更新时间 2022-12-14 12:46:06

文档简介

物理观念:能了解重力、弹力、摩擦力、胡克定律、牛顿第三定律的内涵,能计算滑动摩擦力,知道矢量和标量,能进行力的合成与分解,能用共点力的平衡条件和牛顿第三定律分析解决一些生活中的实际问题。具有与力及其平衡、与牛顿第三定律相关的运动与相互作用观念。
科学思维:能在熟悉的情境中运用轻弹簧、光滑物体等模型解决问题;能对物体受力情况等进行分析和推理,获得结论;能区分观点与证据;知道质疑与创新的重要性。能体会力的等效替代方法;能运用数学中的三角函数、几何关系等对力与平衡的问题进行分析和推理,获得结论;能使用简单、直接、与牛顿第三定律相关的证据表达自己的观点;能从不同角度解决力与平衡的问题。
科学探究:能完成“探究弹簧弹力与形变量的关系”和“探究两个互成角度的力的合成规律”等物理实验。能观察实验现象,发现并提出问题;能根据已有实验方案,使用弹簧测力计、刻度尺等器材收集数据;通过作图或其他方法分析数据,形成初步的结论;能参考教科书内容撰写简单的实验报告,能通过与他人交流解决实验中的问题。
科学态度与责任:通过对弹力及对力的合成规律的探究,能认识实验对物理研究的重要性;能欣赏“力与平衡”之美,能做到实事求是,坚持自己的观点;乐于将牛顿运动定律应用于日常生活实际;能为我国古代精湛的建筑技术而骄傲,体会物理学的技术应用在生产、生活中的作用及意义。
1 重力与弹力
[课标引领]
学业质量水平要求
合格性考试 1.形成初步的重力和弹力的概念,能应用概念解决实际问题。 2.了解胡克定律,能对比较简单的力、重力、弹力进行分析和推理
选择性考试 1.具有清晰的力、重力和弹力的概念,能用力、重力、弹力的概念描述和解释自然现象。 2.能对实际过程的力、重力和弹力的大小、方向进行分析和推理
一、重力
图甲是应用弹簧测力计测量物体受到的重力大小,图乙是苹果落向地面,图丙是用10 N的力水平托着一本书,图丁是用力水平推汽车。
(1)重力大小G与物体的质量m有什么定量关系
答案:G=mg。
(2)为什么树上的苹果总要落向地面
答案:受竖直向下的重力作用。
(3)如何简洁明了地表示出图丙、图丁的两个力
答案:可以用带箭头的线段来表示,线段的长度表示力的大小,箭头的指向表示力的方向,箭尾或者箭头表示力的作用点。
1.重力
产生 由于地球的吸引而使物体受到的力
大小 G=mg,其中g为自由落体加速度
施力物体 地球
特点 地球上的物体都受到重力作用,物体的各部分都受重力作用,方向总是竖直向下
重心 (1)定义:物体各部分所受到的重力作用的集中点,即重心可以看作是物体所受重力的作用点。 (2)决定因素:①物体的形状;②物体内质量的分布。 (3)确定方法 ①形状规则的均匀物体,其位置位于几何中心处; ②质量分布不均匀的薄物体,其位置可利用悬挂法确定
2.力的图示
(1)力的图示:力可以用有向线段表示。有向线段的长短表示力的大小,箭头表示力的方向,箭尾(或箭头)表示力的作用点。
(2)力的示意图:在不需要准确标度力的大小时,通常只需画出力的作用点和方向。
二、弹力 胡克定律
如图所示,甲、乙分别为运动员撑杆跳高和踢足球的场景。
(1)请分析图甲、乙两个场景中力对撑杆及足球产生的效果分别是什么
答案:图甲中力使撑杆发生形变;图乙中力使足球的运动状态发生改变。
(2)在力的作用下一切物体都会发生形变吗
答案:会,只不过有些形变较为明显,有些形变极其微小,需要通过仪器才能观察到。
1.形变:物体在力的作用下形状或体积发生变化,这种变化叫作形变。
2.弹力:发生形变的物体,要恢复原状,对与它接触的物体产生力的作用,这种力叫作弹力。
3.几种弹力及方向
常见弹力 弹力方向
压力、支持力 垂直于物体的接触面,指向被压或被支持的物体
绳子的拉力 沿着绳子而指向绳子收缩的方向
4.弹性形变:物体在发生形变后,撤去作用力能够恢复原状的形变。
5.弹性限度:如果形变过大,超过一定的限度,撤去作用力后物体不能完全恢复原来的形状,这个限度叫作弹性限度。
6.胡克定律:在弹性限度内,弹簧发生弹性形变时,弹力F的大小跟弹簧伸长(或缩短)的长度x成正比,即F=kx,k叫作弹簧的劲度系数,单位是牛顿每米,符号是N/m。k是表示弹簧“软”“硬”程度的物理量。
1.判断
(1)重力的方向也可以表述为指向地心。( × )
(2)重心是物体重力的作用点,重心一定在物体上。( × )
(3)只要物体接触,物体间就存在弹力。( × )
2.如图所示,身体素质和技术相当的跳高运动员,为什么采用“背越式”的要比采用“跨越式”的成绩好呢
答案:跳高运动员在越过相同高度的横杆时,“背越式”运动员的重心比“跨越式”运动员的重心升高的高度小,因此运动员越过相同高度的横杆,“背越式”跳法要比“跨越式”容易些,所以采用“背越式”的运动员要比采用“跨越式”的运动员成绩好。
3.绳子对鱼竿的拉力可以用力的图示或示意图来表示。图中画出的是拉力的图示还是示意图
答案:示意图。
探究点一 对重力与重心的理解(含力的图示、示意图)
在地球上,由于物体受到地心引力的影响,都有向下运动的趋势,这是我们都熟知的自然现象。有这样一种物体,名叫双锥体,如图所示。将双锥体移到导轨较低的一端,再放开双手,锥体将会自动上滚。也就是说双锥体可以在没有外力的作用下,由低向高运动,双锥体会爬坡。我们看到的现象就是双锥体由低处向高处运动。
(1)双锥体所受重力的大小与哪些因素有关 重力的方向能说成是指向地心吗
答案:双锥体的质量、双锥体所处的纬度和高度;不能。
(2)双锥体由低处向高处运动的过程中,双锥体的重心位置是否发生变化 试解释双锥体由低处向高处运动的这一现象
答案:双锥体的重心位置不变;物体在重力场中因受到重力的作用而会自然降低重心位置。我们从表面上看到双锥体由低向高运动,这是因为双锥体的形状、导轨不平行以及导轨两端高低不等,使人在视觉上造成的一种错觉。如图甲、乙、丙所示分别是双锥体的截面图、导轨的俯视图、整个装置的侧视图。可见,实际上双锥体的重心自始至终还是由高向低运动的。
1.对重力的理解
(1)重力一般不等于地球对物体的吸引力。
(2)在同一地点,重力的大小与质量成正比;在地面不同纬度或不同高度,如从两极到赤道或离地面越高,g值均减小,从而使同一物体受到的重力有所不同;物体受到的重力与其运动状态无关。
(3)方向:方向总是竖直向下,但不能说“指向地心”。
2.对重心的理解
(1)重心是重力的等效作用点。
(2)重心的位置可以在物体上,也可以在物体外。
(3)重心在物体上的位置与物体的空间位置、放置状态及运动情况无关。
(4)质量分布均匀、形状规则的物体的重心在其几何中心上;对形状不规则的薄物体,可用支撑法或悬挂法来确定其重心位置。
3.力的图示与力的示意图的区别与联系
力的图示 力的示意图
区 别 用来准确地表示力 用来粗略地表示物体受到了某个力
需要画出力的大小、方向和作用点 只需画出力的方向和作用点
联系 都是用有向线段来表示力,使抽象的力具体、直观
[例1] 关于重力与重心,下列说法正确的是( D )
A.物体在空中下落时受到的重力比静止时受到的重力大
B.形状规则物体的重心一定在其几何中心
C.放在桌面上的物体对桌面的压力,其实就是该物体受到的重力
D.重心是物体内各部分所受的重力等效作用点
解析:空中下落的物体重力与静止的物体重力相同,故A错误;形状规则物体的重心,不一定在它的几何中心上,还与物体的质量分布有关。当物体的质量分布均匀时,规则物体的重心一定在它的几何中心上,故B错误;压力是由于相互挤压而产生的,与重力的性质不同,两者不是同一种力,故C错误;重心是物体内各部分所受重力的等效作用点,故D正确。
(1)在不同地点,重力的大小一般不同。
(2)重力的大小可以用弹簧测力计来测量,压力与重力是两种不同性质的力。
(3)重力的方向总是竖直向下,不是垂直于支撑面。
(4)重心不一定在物体上,也不一定在其几何中心上,重心不是物体上最重的点。
[针对训练1]下列关于重力和重心的说法中,正确的是( A )
A.不倒翁之所以“不倒”,是因为它的重心很低
B.飞机能在天上匀速飞行而不掉下来,是因为没有受到重力的作用
C.物体的重心就是该物体受到重力最大的点
D.悬崖上落下的石块速度越来越大,是因为石块所受的重力越来越大
解析:物体的重心越低,稳定性越好,因此“不倒翁”之所以不倒是因为重心很低,故A正确;在天空中飞行的飞机,仍然受到重力的作用,它之所以掉不下来,是因为它还受升力的作用,故B错误;重心是物体各部分所受重力的等效作用点,不是物体上最重的一点,故C错误;悬崖上落下的石块速度越来越大,是因为石块受重力的作用做加速运动,并不是因为重力越来越大,故D错误。
探究点二 对弹力的理解及弹力有无的判断
如图所示,将一个钢球分别放在量杯、口大底小的普通茶杯和三角烧杯中,钢球在各容器的底部与侧壁相接触,处于静止状态。若钢球和各容器都是光滑的,各容器的底部均处于水平面内。各容器的侧壁对钢球有没有弹力作用 如何判断
答案:各容器的侧壁对钢球都没有弹力作用。
判断方法:①如果将容器的侧壁去掉,钢球仍处于静止状态,故各容器的侧壁对钢球没有弹力作用。
②假设各容器的侧壁对钢球有弹力的作用,则钢球将运动,这与钢球的静止状态不符,所以各容器的侧壁对钢球没有弹力作用。
1.弹力的产生同时具备两个条件
(1)两物体直接接触。
(2)两物体接触处发生弹性形变。
2.显示微小形变的方法
显示微小形变可以用光学放大法和力学放大法,如图甲、乙所示,它们都是把微小的形变进行放大,便于观察。
3.弹力有无的判断方法
方法 思路 例证
条件法 形变比较明显:两物体间相互接触且发生弹性形变 健身训练中弹性绳与手直接接触,弹性绳发生了弹性形变,弹性绳与手之间一定存在弹力
假设法 形变不明显:物体间存在挤压条件,物体一定发生形变 图中细线竖直、斜面光滑,因去掉斜面体,小球的状态不变,故小球只受细线的拉力,不受斜面的支持力
替换法 用细绳替换装置中的杆,看能不能维持原来的力学状态,如果能维持,则说明这个杆提供的是拉力;否则,提供的是支持力 图中轻杆AB、AC。用绳替换AB,原装置状态不变,说明AB对A施加的是拉力;用绳替换AC,原状态不能维持,说明AC对A施加的是支持力
[例2]在下面四幅图所示的情况中,各接触面均光滑,小球P、Q之间一定存在弹力的是( C )
解析:假设两球间有弹力,则悬线不竖直,与假设矛盾,故P、Q间无弹力,故A错误;假设两球间有弹力,则Q小球将向右运动,与假设矛盾,故P、Q间无弹力,故B错误;假设两球间无弹力,则两根悬线都竖直,与假设矛盾,说明P、Q间有弹力,故C正确;P竖直悬挂,则P、Q之间没有相互挤压,故P、Q间没有弹力,故D错误。
判断弹力有无的几点注意
(1)施力物体要恢复形变而对受力物体有弹力。
(2)两接触物体间是否存在弹力作用决定于另一条件——是否发生弹性形变。
(3)发生形变的物体之间是否有弹力,决定于是否为弹性形变。
[针对训练2]下列关于弹力的说法正确的是( D )
A.木块放在桌面上受到一个向上的弹力,这是由于木块发生了形变而产生的
B.拿一根细竹竿拨动水中的木头,木头受到竹竿的弹力,这是由于木头发生了形变而产生的
C.观察不到物体的形变,就一定没有产生弹力
D.挂在电线下的电灯受到向上的拉力,是因为电线发生微小形变而产生的
解析:弹力是由于施力物体发生形变后想要恢复原状而对和它接触的物体产生的力。木块放在桌面上受到向上的弹力,木块是受力物体,桌面是施力物体,所以这是桌面发生微小形变而产生的,故A错误;用一根细竹竿拨动水中的木头,木头受到竹竿的弹力,竹竿是施力物体,所以推力是由于竹竿发生形变而产生的,故B错误;有时物体发生微小的弹性形变,肉眼是观察不到的,只要是相互接触的物体发生了弹性形变,就会有弹力,故C错误;挂在电线下面的电灯受到向上的拉力,电线是施力物体,所以是由于电线发生微小形变而产生的,故D正确。
探究点三 弹力的方向判断
(1)体育课上一学生将足球踢向斜台,如图所示,足球与斜台之间有相互作用的弹力吗 若有,则斜台给足球的弹力方向如何
答案:有;足球所受弹力方向垂直于斜台指向足球。
(2)如图所示为轻杆把物体支持起来。图中杆A、B、C对重物的弹力(或重物对杆的弹力)方向一定沿杆吗
答案:不一定;轻杆A给重物的弹力F类同于绳子的作用,如图甲所示;轻杆B给重物的弹力F类同于支持力,如图乙所示;轻杆C给重物的弹力F并不沿着杆,根据二力平衡判断出F的方向应竖直向上,如图丙所示。
1.弹力方向的特点
发生弹性形变的物体,由于要恢复原状产生弹力,所以弹力的方向由施力物体的形变的方向决定,弹力的方向总是与施力物体形变的方向相反。
2.几种常见弹力的方向
(1)常见接触方式中物体的弹力方向
弹力方向 示意图
面与面 垂直于接触面指向受力物体
点与面 过接触点垂直于面指向受力物体
点与点 垂直于公切面指向受力物体
(2)轻绳、轻杆和轻弹簧的弹力方向
弹力方向 示意图 特点
轻绳 沿绳子指向绳子收缩的方向 只能产生拉力,弹力可突变
轻杆 可沿杆的方向 既可产生拉力,又可产生支持力,弹力可突变
可不沿杆的方向
轻弹簧 沿弹簧形变的反方向 既可产生拉力,又可产生支持力,弹力不能突变
[例3] 如图所示,球A在斜面上,被竖直挡板挡住而处于静止状态。关于球A所受的弹力,以下说法正确的是( C )
A.球A仅受一个弹力作用,弹力的方向垂直斜面向上
B.球A受两个弹力作用,一个水平向左,一个垂直斜面向下
C.球A受两个弹力作用,一个水平向右,一个垂直斜面向上
D.球A受三个弹力作用,一个水平向右,一个垂直斜面向上,一个竖直向下
解析:由于小球对挡板和斜面接触挤压,挡板和斜面都产生弹性形变,它们对小球产生弹力,而且弹力的方向垂直于接触面,所以挡板对小球的弹力方向水平向右,斜面对小球的弹力方向垂直于斜面向上,故选C。
判断弹力方向的几点注意
(1)弹力方向为施力物体恢复原状的方向。
(2)杆与点接触时弹力方向垂直于杆。
(3)杆的形变方向情况较为复杂,一般由物体所处状态确定,如根据二力平衡确定杆的弹力。
[针对训练3]画出图中各个静止的球体A所受的弹力的示意图并用字母表示出来。(各个接触面和点均光滑)
解析:由题意可知,球体A所受的弹力的示意图如图所示。
答案:图见解析
探究点四 胡克定律
如图所示,图甲表示弹簧处于原长状态,图乙表示弹簧处于拉伸状态,图丙表示弹簧处于压缩状态。
(1)对于同一根弹簧,被拉得越长,弹簧的弹力越大,关于弹簧弹力的大小,甲说:弹簧弹力大小与其长度成正比;乙说:弹力的变化量ΔF与弹簧形变量的变化量Δx成正比。哪个同学说法正确
答案:甲错误,乙正确。弹簧的弹力与弹簧的形变量成正比,即F=kx,也有ΔF=k·
Δx。
(2)图甲中弹簧的原长为l0;图乙中在拉力F的作用下弹簧的长度为l1;图丙中在压力F′的作用下,弹簧的长度为l2,则F和F′分别等于多少
答案:图乙中弹簧伸长量为(l1-l0),图丙中弹簧压缩量为(l0-l2),所以F=k(l1-l0),F′=k(l0-l2)。
(3)若l1-l0=|l2-l0|,两弹力有何不同
答案:弹力的大小相等,方向不同,乙中弹力为“拉力”,丙中弹力为“推力”。
 对胡克定律F=kx的理解
1.公式适用于弹簧(或橡皮条)发生弹性形变且在弹性限度内的情形。
2.公式中x是弹簧的形变量,即弹簧的伸长量或压缩量,注意不是弹簧的长度。弹簧伸长量或压缩量相同时,弹力大小相等,但方向不同。
3.弹簧的劲度系数k由弹簧本身的材料、长度、粗细、匝数等因素决定。
4.弹力F与形变量x的图像是一条通过原点的倾斜直线,直线的斜率表示弹簧的劲度系数k。弹力的变化量ΔF与形变量的变化量Δx也成正比,即ΔF=kΔx。
[例4]一根轻弹簧的伸长量x跟所受的外力F之间的关系图像如图所示。
(1)求弹簧的劲度系数k;
(2)若弹簧原长l0=60 cm,当把弹簧压缩到40 cm长时,需要多大的压力
解析:(1)由x-F图线知,弹簧的弹力大小和弹簧伸长量大小成正比,根据胡克定律F=kx知图线的斜率的倒数等于弹簧的劲度系数,则
k===1 500 N/m。
(2)若弹簧原长l0=60 cm,当把弹簧压缩到40 cm长时,弹簧的压缩量x′=60 cm-40 cm=20 cm=0.2 m,
需要的压力F′=kx′=1 500 N/m×0.2 m=300 N。
答案:(1)1 500 N/m (2)300 N
弹簧弹力与弹簧长度的关系图像
(1)只要弹簧处于弹性限度内,则图线为直线。
(2)图线在横轴上的截距表示弹簧的原长。
(3)图线的斜率表示弹簧的劲度系数。
(4)利用图线上的两数据点列方程可求解弹簧的原长或劲度系数。
[针对训练4]如图所示,轻弹簧的两端各受15 N拉力F作用,弹簧平衡时伸长了3 cm(在弹性限度内),那么下列说法中正确的是( C )
A.该弹簧的劲度系数k=5 N/m
B.该弹簧的劲度系数k=1 000 N/m
C.若该弹簧被压缩,且压缩量是2 cm时,则弹力大小为10 N
D.根据公式k=,弹簧的劲度系数k会随弹簧弹力F的增大而增大
解析:弹簧的弹力F=15 N,根据胡克定律F=kx得弹簧的劲度系数为k===500 N/m,故A、B错误;若该弹簧被压缩,且压缩量是2 cm时,则弹力大小为F′=kx′=500 N/m×0.02 m=10 N,故C正确;弹簧的劲度系数k与弹簧弹力F的变化无关,与弹簧本身有关,故D错误。
自主建构 教材链接
教材第57页“演示”提示:通过平面镜观察桌面的微小形变。按压两镜之间的桌面时,光点的位置发生变化,压力越大变化就越明显。这个现象说明了桌子发生了微小形变
课时作业
1.如图所示,两辆车正以相同的速度做匀速直线运动,根据图中所给信息和所学知识,可以得出的结论是( C )
A.重力的方向总是垂直支持面向下的
B.物体受到的重力就是物体对车厢的压力
C.物体各部分都受重力作用,重心是重力的等效作用点
D.物体重心的位置与物体形状和质量分布无关,且重心一定在物体上
解析:重力的方向总是和水平面垂直,是竖直向下,而不是垂直支持面向下,A错误;物体受到的重力施力物体是地球,物体对车厢的压力施力物体是物体,两者性质不同,B错误;物体各部分都受重力作用,重心是重力的等效作用点,C正确;物体重心的位置与物体形状和质量分布有关,且重心不一定在物体上,D错误。
2.如图所示,“马踏飞燕”是汉代艺术家高度智慧、丰富想象、浪漫主义精神和高超的艺术技巧的结晶,是我国古代雕塑艺术的稀世之宝。飞奔的骏马之所以能用一只蹄稳稳地踏在飞燕上,是因为( D )
A.马跑得快
B.马蹄大
C.马的重心在飞燕上
D.马的重心位置和飞燕(视为质点)在一条竖直线上
解析:马的重心不在飞燕上,由二力平衡可知,只有马的重心位置和飞燕(视为质点)在一条竖直线上,才能保持平衡,故A、B、C错误,D
正确。
3.在半球形光滑容器内放置一细杆,如图所示,细杆与容器的接触点分别为A、B两点,则容器上A、B两点对细杆的作用力方向分别为( D )
A.均竖直向上
B.均指向球心
C.A点处指向球心,B点处竖直向上
D.A点处指向球心,B点处垂直于细杆斜向上
解析:容器对细杆A、B两点处都有支持力。在A处,细杆与容器的接触面是容器的切面,容器对细杆的支持力垂直切面指向细杆,根据几何知识得知,此方向指向球心O,即A点处容器对细杆的支持力指向球心O;在B处,细杆与容器的接触面就是细杆的下表面,所以B点处容器对细杆的支持力垂直于细杆斜向上,故选项D正确。
4.(多选)关于胡克定律,下列说法正确的是( ACD )
A.由F=kx可知,在弹性限度内弹力F的大小与弹簧形变量x成正比
B.由k=可知,劲度系数k与弹力F成正比,与弹簧形变量x成反比
C.弹簧的劲度系数k是由弹簧本身决定的,与弹力F的大小和弹簧形变量x的大小无关
D.弹簧的劲度系数在数值上等于弹簧伸长(或缩短)单位长度时弹力的大小
解析:在弹性限度内,弹簧的弹力与弹簧形变量成正比,故A项正确;弹簧的劲度系数由弹簧本身的性质决定,与弹力F及弹簧形变量x无关,故C项正确,B项错误;由胡克定律得k=,可理解为弹簧每伸长(或缩短)单位长度时弹力的改变值与k值相等,故D项正确。
5.如图所示,一劲度系数为k,原长为L0的轻弹簧,下端固定在水平面上,先用向下的力F压缩弹簧至稳定,然后改用向上的力F拉弹簧,再次至稳定,则弹簧上端上升的高度( B )
A. B. C.L0+ D.L0-
解析:当用向下的力F压缩弹簧至稳定时,弹簧压缩的长度为x1=;当改用向上的力F拉弹簧,再次至稳定时弹簧伸长的长度为x2=;则弹簧上端上升的高度为h=x1+x2=,故B正确,A、C、D错误。
6.如图所示,一饮料杯装满水,杯的底部有一小孔,在水从小孔不断流出的过程中,杯子连同杯中的水的共同重心将( D )
A.一直下降
B.一直上升
C.先升后降
D.先降后升
解析:装满水的饮料杯和水整体的重心在杯的底部的上方,随着水从小孔不断流出,重心位置不断下降,当水流完后,重心又上升,故重心的位置先下降后上升,故A、B、C错误,D正确。
7.下列各图中甲、乙两球之间不存在弹力的是(所有接触面均光滑)
( B )
解析:A图中若两球间无弹力则小球将向凹面的底部运动,故甲、乙间有弹力,选项A错误;B图两球间若有弹力则小球将向两边运动,故甲、乙间无弹力,选项B正确;C图两球间若无弹力则小球甲将向右下方运动,故甲、乙间有弹力,选项C错误;D图两球间若无弹力则小球甲将向下运动,故甲、乙间有弹力,选项D错误。
8.如图所示,静止的小球m分别与一个物体(或面)接触,设各接触面光滑,小球m受到两个弹力的是( C )
解析:A选项,小球处于静止状态,重力和绳的弹力平衡,斜面与小球之间不可能产生弹力,否则小球不可能平衡,故A选项中小球只受一个弹力作用,故A错误;B选项,图中小球只受重力和支持力,支持力是弹力,即只有一个弹力,故B错误;C选项,图中小球受到绳子拉力、重力、斜面的支持力三个力的作用,处于平衡状态,因此小球受两个弹力作用,故C正确;D选项,图中竖直面对小球没有弹力作用,否则小球不可能处于平衡状态,故D错误。
9.图示为一轻质弹簧的长度和弹力大小的关系图像,根据图像判断,下列结论正确的是( A )
A.弹簧的劲度系数为1 N/ cm
B.弹簧长度为6 cm时,弹簧的劲度系数为0
C.弹簧长度为4 cm时,弹簧的弹力为4 N
D.当弹簧弹力为5 N时,弹簧的长度一定为11 cm
解析:Fx图像的斜率表示弹簧的劲度系数,有k===1 N/ cm,
故A正确;弹簧的劲度系数由弹簧本身决定,与弹簧长度无关,故B错误;由图读出,弹簧长度为4 cm时,弹簧的弹力为2 N,故C错误;由图读出弹力为5 N,弹簧可能处于压缩或伸长状态,故长度为1 cm或
11 cm,故D错误。
10.一个原长为L的理想轻弹簧,上端固定,下端悬挂一个质量为m的小球(视为质点),稳定时弹簧的总长变为1.5L。现将两个这样的弹簧和两个这样的小球分别如图中甲、乙的方式悬挂并保持稳定(弹簧都在弹性限度内,重力加速度为g)。求:
(1)弹簧的劲度系数;
(2)通过计算说明图示甲、乙两种方式中,两个弹簧总长度的关系。
解析:(1)弹簧下端悬挂一个质量为m的小球,稳定时弹簧弹力F=mg,且F=k·(1.5L-L)
解得k=。
(2)甲方式,弹簧2的伸长量为x2==0.5L
弹簧1的伸长量为x1==L,
总长度l1=2L+x1+x2=3.5L,
乙方式,弹簧1、2连接在一起,故弹簧1、2的伸长量
x′=2·=2L,
l2=2L+x′=4L,
l1答案:(1) (2)甲中弹簧总长度小于乙中弹簧总长度实验 探究两个互成角度的力的合成规律
一、数据处理
1.分力、合力的图示关系:分别作出各组测量中F1、F2和F的图示,用虚线把拉力F的箭头端分别与F1、F2的箭头端连接,围成的形状像一个平行四边形,可以推知以F1、F2为邻边作出的平行四边形的对角线表示合力F。
2.
理论值:在白纸上从O点开始分别作出两个弹簧测力计同时拉橡皮条时拉力F1和F2两力的图示,并以F1、F2的力的图示为邻边作平行四边形,且作所夹对角线,该对角线为合力F′,如图所示。
3.测量值:用刻度尺从O点起作出一个弹簧测力计拉橡皮条时拉力F的图示。
4.结论:以表示两个合力F1、F2的有向线段为邻边作出的平行四边形,其两力之间的对角线代表合力F的大小和方向。
二、误差分析
产生原因 减小方法
偶然 误差 读数 正视、平视弹簧测力计刻度
作图 (1)两分力夹角在60°~120°之间。 (2)弹簧测力计读数尽量大
三、注意事项
1.正确使用弹簧测力计
(1)测量前应首先检查弹簧测力计的零点是否准确,注意使用中不要超过其量程。
(2)实验时,弹簧测力计必须保持与木板平行,且拉力应沿轴线方向。弹簧测力计的指针、拉杆都不要与刻度板和刻度板末端的限位孔发生摩擦。
(3)读数时应正视、平视刻度,估读到最小刻度的下一位。
2.规范实验操作
(1)位置不变:在同一次实验中,使橡皮条拉长时结点O的位置一定要相同。
(2)角度合适:用两个弹簧测力计钩住细绳套互成角度地拉橡皮条时,其夹角不宜太小,也不宜太大,以60°~120°之间为宜。
(3)减小误差
①用弹簧测力计测拉力时要使拉力沿弹簧测力计轴线方向。
②应尽量使橡皮条、弹簧测力计和细绳套位于与纸面平行的同一平面内。
③在不超出弹簧测力计量程及在橡皮条弹性限度内的前提下,测量数据应尽量大一些。
④细绳套适当长一些,便于确定力的方向。不要直接沿细绳套方向画直线,应在细绳套两端画投影点,去掉细绳套后,连直线确定力的方向。
(4)记录精准
①用两个弹簧测力计拉橡皮条时,记录两弹簧测力计示数、两细绳方向和结点O的位置。
②用一个弹簧测力计拉橡皮条时,记录弹簧测力计示数和细绳方向。
3.规范合理作图:在同一次实验中,画力的图示选定的标度要相同,并且要恰当选定标度,使力的图示稍大一些。
类型一 实验原理与探究过程
[例1] 某同学做“探究两个互成角度的力的合成规律”实验的情况如图甲所示,其中A为固定橡皮条的图钉,O为橡皮条与细绳的结点,OB和OC为细绳。图乙是在白纸上根据实验结果画出的图。
(1)如果没有操作失误,图乙中的F与F′两力中,方向一定沿AO方向的是    。
(2)本实验采用的科学方法是    。
A.理想实验法 B.等效替代法
C.控制变量法 D.建立物理模型法
(3)实验时,主要的步骤是:
A.在桌上放一块方木板,在方木板上铺一张白纸,用图钉把白纸钉在方木板上;
B.用图钉把橡皮条的一端固定在板上的A点,在橡皮条的另一端拴上两条细绳,细绳的另一端系着绳套;
C.用两个弹簧测力计分别钩住绳套,互成角度地拉橡皮条,使橡皮条伸长,结点到达某一位置O,记录下O点的位置,读出两个弹簧测力计的示数;
D.按选好的标度,用铅笔和刻度尺作出两只弹簧测力计的拉力F1和F2的图示,并用平行四边形定则求出合力F′;
E.只用一只弹簧测力计,通过细绳套拉橡皮条使其伸长,读出弹簧测力计的示数,记下细绳的方向,按同一标度作出这个力F的图示;
F.比较F′和F的大小和方向,看它们是否相同,得出结论。
上述步骤中,有重要遗漏的步骤的序号是    和    。遗漏的内容分别是 和  。
解析:(1)由一个弹簧测力计拉橡皮条至O点的拉力一定沿AO方向;而根据平行四边形定则作出的合力,由于误差的存在,不一定沿AO方向,故一定沿AO方向的是F。
(2)合力与分力是等效替代关系,作用效果相同,故B正确。
(3)①根据“探究两个互成角度的力的合成规律”实验的操作规程可知,有重要遗漏的步骤的序号是C、E。
②在C中应加上“记下两条细绳的方向”,E中应说明要把橡皮条的结点拉到同一位置O。
答案:(1)F (2)B (3)C E 记下两条细绳的方向 把橡皮条的结点拉到同一位置O
类型二 数据处理与误差分析
[例2] 在“探究两个互成角度的力的合成规律”实验中,现有木板、白纸、图钉、橡皮条、细绳套和一个弹簧测力计。
(1)为完成实验,某同学另找来一根弹簧,测量其劲度系数,得到的实验数据如表所示。
弹力F/N 0.50 1.00 1.50 2.00 2.50 3.00 3.50
伸长量 x/(×10-2 m) 0.74 1.80 2.80 3.72 4.60 5.58 6.42
用作图法求得该弹簧的劲度系数k=     N/m。
(2)某次实验中,弹簧测力计的指针位置如图所示,其读数为     N;同时利用(1)中结果获得弹簧上的弹力值为2.50 N,请在虚线框中画出这两个共点力的合力F合,并由图计算F合=     N。
(3)在以上实验中,合力实际值与理论值有差异,造成误差的原因可能是             。(写出一条即可)
解析:(1)根据表格数据描点,然后连成一条过原点的直线,如图所示,直线的斜率表示弹簧的劲度系数,k=≈55 N/m。
(2)
读出弹簧测力计的读数为2.10 N(保留3位有效数字);以O为顶点,画出两细绳套的方向就是两拉力方向,再确定并画好力的标度,画出两拉力的图示,以两拉力为邻边作出平行四边形,画出平行四边形的对角线,即合力F合。用刻度尺量出合力的长度,根据确定的标度算出合力的大小,即F合=3.20 N。
(3)造成误差的原因可能是弹簧弹力值不够准确,作图时分力方向未严格与弹簧测力计轴线平行,拉橡皮条时,器材不够贴近木板等。
答案:(1)55(53~55均可) (2)2.10 图见解析 3.20(3.10~3.40均正确) (3)见解析
类型三 方案拓展与实验创新
[例3] 有同学利用如图所示的装置来做“探究两个互成角度的力的合成规律”实验:在竖直木板上铺有白纸,固定两个光滑的滑轮A和B,将绳子打一个结点O,每个钩码的重量相等,当系统达到平衡时,根据钩码个数读出三根绳子的拉力FTOA、FTOB和FTOC,回答下列问题:
(1)改变钩码个数,实验能完成的是    。(绳子能承受的拉力足够大)
A.钩码的个数N1=N2=2,N3=4
B.钩码的个数N1=N3=3,N2=4
C.钩码的个数N1=N2=N3=4
D.钩码的个数N1=3,N2=4,N3=5
(2)在拆下钩码和绳子前,最重要的一个步骤是    。
A.标记结点O的位置,并记录OA、OB、OC三段绳子的方向和钩码个数
B.量出OA、OB、OC三段绳子的长度
C.用量角器量出三段绳子之间的夹角
D.用天平测出钩码的质量
(3)在作图时,你认为下图中    (选填“甲”或“乙”)是正确的。
解析:
(1)对O点受力分析如图所示,OA、OB、OC分别表示FTOA、FTOB、FTOC的大小,由于O点受三个力处于平衡,所以FTOA、FTOB的合力与FTOC等大反向,再结合合力与分力的关系可知|FTOA-FTOB|≤FTOC≤FTOA+FTOB,又因为该实验中FTOA与FTOB无法朝同一方向,故|FTOA-FTOB|≤FTOC(2)为探究求合力的方法,必须作受力分析图,从力的三要素角度出发,先明确受力点,即标记结点O的位置,其次要作出力的方向并读出力的大小,最后作出力的图示,因此要记录结点O的位置、钩码的个数和OA、OB、OC三段绳子的方向,故A正确,B、C、D错误。
(3)F3一定在竖直方向OC上,故图甲符合实际。
答案:(1)BCD (2)A (3)甲
课时作业
1.如图所示,在“探究求合力的方法”实验中,两弹簧测力计将橡皮条拉伸到O点,以下说法正确的是( A )
A.应平行于木板拉弹簧测力计,且两个测力计都不能超过最大刻度
B.只需记录两个弹簧测力计的示数
C.应保证BO、CO相互垂直
D.改用一只弹簧测力计拉橡皮条时,只需保证橡皮条方向与原来一致
解析:拉橡皮条时,弹簧测力计、橡皮条、细绳应贴近木板且与木板平面平行,并且示数不能超过最大刻度,故A正确;两个弹簧测力计的示数和细绳的方向都要记录,故B错误;实验中不需要保证两个拉力的方向相互垂直,故C错误;为了保证效果相同,改用一只弹簧测力计拉橡皮条时,要保证橡皮条方向与原来一致并且自由端仍要拉到O点,故D错误。
2.“探究两个互成角度的力的合成规律”的实验如图甲所示,其中A为固定橡皮条的图钉,O为橡皮条与细绳的结点,OB和OC为细绳,图乙为白纸上根据实验要求画出的图示。
(1)本实验中“等效替代”的含义是    。
A.橡皮条可以用细绳替代
B.左侧弹簧测力计的作用效果可以替代右侧弹簧测力计的作用效果
C.右侧弹簧测力计的作用效果可以替代左侧弹簧测力计的作用效果
D.两弹簧测力计共同作用的效果可以用一个弹簧测力计的作用效果替代
(2)图乙中的F与F′两力中,方向一定沿AO方向的是    。
(3)下列措施中可减小实验误差的是    。
A.拉橡皮条的细绳细些且长度适当
B.拉橡皮条时,弹簧测力计、橡皮条、细绳应贴近木板且与木板面
平行
C.记录弹簧测力计拉力方向时,标记同一细绳方向的两点要远些
D.应使拉力F1和F2的夹角为90°
解析:(1)本实验中“等效替代”的含义是两弹簧测力计共同作用的效果可以用一个弹簧测力计的作用效果替代,故D正确。
(2)图乙中的F′是合力的理论值,而F是合力的实际值,两力中,方向一定沿AO方向的是F。
(3)拉橡皮条的细绳细些且长度适当,以便确定力的方向,选项A正确;拉橡皮条时,弹簧测力计、橡皮条、细绳应贴近木板且与木板面平行,选项B正确;记录弹簧测力计拉力方向时,标记同一细绳方向的两点要远些,这样可减小记录方向时产生的误差,选项C正确;拉力F1和F2的夹角不一定为90°,大小适当即可,选项D错误。
答案:(1)D (2)F (3)ABC
3.某同学用如图所示的实验装置来做“探究两个互成角度的力的合成规律”实验。弹簧测力计A挂于固定点P,下端用细线挂一重物M。弹簧测力计B的一端用细线系于O点,手持另一端向左拉,使结点O静止在某位置。分别读出弹簧测力计A和B的示数,并在贴于竖直木板的白纸上记录O点的位置和拉线的方向。
(1)本实验用的弹簧测力计示数的单位为 N,图中A的示数为
    N。
(2)下列不必要的实验要求是     。
A.应测量重物M所受的重力
B.弹簧测力计应在使用前校零
C.拉线方向应与木板平面平行
D.改变拉力,进行多次实验,每次都要使O点静止在同一位置
(3)某次实验中,该同学发现弹簧测力计A的指针稍稍超出量程,请你提出两种办法使弹簧测力计A的示数变小。
方法1:  ;
方法2:  。
解析:(1)由图示可知,弹簧测力计分度值为0.2 N,其示数为3.8 N。
(2)实验通过作出三个力的图示,来验证“力的平行四边形定则”,因此重物受到的重力必须要知道,故A正确;弹簧测力计是测出力的大小,所以要准确必须在测之前校零,故B正确;拉线方向必须与木板平面平行,这样才确保力的方向准确性,故C正确;该实验中采用使M平衡的方法来确定效果相同,即M受到的重力已确定,FA、FB大小与方向均一定,故改变拉力进行多次实验时,不必使O点每次静止在同一位置,故D错误。
(3)某次实验中,该同学发现弹簧测力计A的指针稍稍超出量程,则说明弹簧测力计B与重物这两根细线的力的合力已偏大。又由于挂重物的细线和弹簧测力计B的细线方向已确定,所以要么减小重物的质量,要么减小弹簧测力计B的拉力,从而使弹簧测力计A不超出量程。
答案:(1)3.8 (2)D (3)减小弹簧测力计B的拉力 减小重物M的
质量
4.完成“探究两个互成角度的力的合成规律”实验的几个主要
步骤如下:
(1)如图甲,用两只弹簧测力计分别钩住细绳套,互成角度地拉橡皮条,使橡皮条伸长,记下结点O的位置、两弹簧测力计的读数F1、F2以及两细绳套的方向。
(2)如图乙,用一只弹簧测力计钩住细绳套把橡皮条的结点拉到
       ,记下细绳套的方向(如图丙中的c),读得弹簧测力计的示数F=    。
(3)如图丙,按选定的标度作出了F1、F2的图示,请在图丙中:
①按同样的标度作出力F的图示;
②按力的平行四边形定则作出F1、F2的合力F′。
(4)若F′与F             ,则平行四边形定则得到验证。
解析:(2)如图乙,用一只弹簧测力计钩住细绳套把橡皮条的结点拉到同一位置O,记下细绳套的方向,由图示弹簧测力计可读得弹簧测力计的示数F=4.0 N。
(3)①作出力F的图示如图所示。
②根据力的平行四边形定则,作出F1、F2的合力F′,如图所示。
(4)若F′与F在误差允许范围内大小相等,方向相同,则平行四边形定则得到验证。
答案:(2)同一位置O 4.0 N (3)图见解析
(4)在误差允许范围内大小相等,方向相同
5.做“探究两个互成角度的力的合成规律”实验时:
(1)下列器材必须要用的是    (多选)。
(2)在做上述实验时,在水平放置的木板上垫上一张白纸,把橡皮条的一端固定在板上,另一端拴上两个细绳套,通过细绳用两个互成角度的弹簧测力计拉橡皮条,使结点移到某一位置O,此时需记下:①        ;②       ;③       。然后用一个弹簧测力计把橡皮条拉长,使结点到达         ,再记下              。
(3)在某次实验中,某同学的实验结果如图所示,其中A为固定橡皮条的图钉,O为橡皮条与细绳结点的位置。图中    是力F1与F2的合力的理论值;    是力F1与F2的合力的实验值。通过把F和F′进行比较,验证平行四边形定则。
解析:(1)实验中要作平行四边形,故需要用刻度尺,还需要通过弹簧测力计拉伸橡皮条来体现力的效果。
(2)实验采用了等效替代法,所以两次拉橡皮筋要到同一位置O点,因此要记录橡皮条拉伸后O点的位置、弹簧测力计的读数及细绳的方向。
(3)本实验中合力的理论值是通过作平行四边形得出,而合力的实验值则是通过用一个弹簧测力计拉橡皮条使结点到达同一O点而直接测得。
答案:(1)BC (2)O点位置 细绳所指方向 相应弹簧测力计读数 同一位置O点 弹簧测力计读数和细绳方向 (3)F F′
6.某同学在“探究两个互成角度的力的合成规律”实验中,测得图中弹簧OC的劲度系数为500 N/m。如图甲所示,用弹簧OC和弹簧测力计a、b做“探究求合力的方法”实验。在保持弹簧伸长1.00 cm 不变的条件下:
(1)若弹簧测力计a、b间夹角为90°,弹簧测力计a的读数是    N(图乙中所示),则弹簧测力计b的读数可能为    N。
(2)若弹簧测力计a、b间夹角大于90°,保持弹簧测力计a与弹簧OC的方向不变,减小弹簧测力计b与弹簧OC的夹角,则弹簧测力计a的读数    ,弹簧测力计b的读数    。(均选填“变大”“变小”或“不变”)
解析:(1)弹簧OC的弹力FO C=kx=500 N/m×0.01 m=5 N。由图乙可知,弹簧测力计a的读数Fa=3.00 N。所以弹簧测力计b的读数可能为Fb==4.00 N。
(2)由图可知,随着弹簧测力计b与弹簧OC的夹角的减小,弹簧测力计a的拉力变大,弹簧测力计b的拉力也变大,所以弹簧测力计a、b的读数变大。
答案:(1)3.00 4.00(3.90~4.10都正确)
(2)变大 变大
7.某同学在学完“力的合成”后,想在家里做“探究两个互成角度的力的合成规律”实验。他从学校的实验室里借来两个弹簧测力计,按如下步骤进行实验:
A.在墙上贴一张白纸用来记录弹簧测力计弹力的大小和方向
B.在一个弹簧测力计的下端悬挂一装满水的水杯,记下静止时弹簧测力计的读数F
C.将一根大约30 cm长的细线从杯带中穿过,再将细线两端分别拴在两个弹簧测力计的挂钩上。在靠近白纸处用手对称地拉开细线,使两个弹簧测力计的示数相等,在白纸上记下细线的方向,弹簧测力计的示数如图甲所示
D.在白纸上按一定标度作出两个弹簧测力计的弹力的图示,如图乙所示,根据力的平行四边形定则可求出这两个力的合力F′
(1)在步骤C中,弹簧测力计的读数为     N。
(2)在步骤D中,合力F′=     N。
(3)若              ,就可以验证力的平行四边形定则。
解析:(1)弹簧测力计读数时需要估读,根据图甲弹簧测力计指针的位置,可读出力的大小为3.00 N。
(2)根据平行四边形定则作出合力F′的图示如图所示,可求得F′的大小为5.2 N。
(3)若F′在竖直方向且数值与F近似相等,在实验误差允许的范围内可以验证力的平行四边形定则。
答案:(1)3.00 (2)5.2(5.0~5.4均对)
(3)F′在竖直方向且数值与F近似相等
8.在“探究求合力的方法”实验中:
(1)部分实验步骤如下,请完成有关内容:
A.将一根橡皮筋的一端固定在贴有白纸的竖直平整木板上,另一端绑上两根细线。
B.在其中一根细线上挂上5个质量相等的钩码,使橡皮筋拉伸,如图甲所示,记录  、       、       。
C.将步骤B中的钩码取下,分别在两根细线上挂上4个和3个质量相等的钩码,用两光滑硬棒B、C使两细线互成角度,如图乙所示,小心调整B、C的位置,使           ,记录  。
(2)实验证明,图乙中两拉力的合力与图甲中拉力相等,那么图乙中=    。
解析:(1)根据“探究求合力的方法”的实验原理,B中应记录结点O的位置、钩码个数和拉力方向。C中调整B、C位置的目的是使橡皮筋与细线的结点O与步骤B中记录的结点位置重合,需要记录的是拉力方向和钩码个数。
(2)设每个钩码重为G,
则F1=4G,F2=3G,F=5G
其关系如图所示,且F1与F2垂直,得cos α=,cos β=,
所以=。
答案:(1)结点O的位置 钩码个数 拉力方向 结点O与步骤B中位置重合 钩码个数和对应拉力的方向 (2)2 摩擦力
[课标引领]
学业质量水平要求
合格性考试 1.形成初步的滑动摩擦力和静摩擦力的概念,应用摩擦力的知识,解决实际问题。 2.能对比较简单的摩擦现象进行分析和推理,获得滑动摩擦力有无和方向的结论
选择性考试 1.能对摩擦力的综合性问题进行分析,获得定量分析摩擦力的方法。 2.能根据滑动摩擦力和静摩擦力探究方案,用基本器材获得滑动摩擦力大小和最大静摩擦力大小的基本数据,得到滑动摩擦力大小和最大静摩擦力的影响因素或变化规律
一、滑动摩擦力
(1)用力将黑板擦(毛较长)在黑板上滑动,观察毛刷的弯曲方向。如图所示,毛刷为什么向后弯曲
答案:因为毛刷所受滑动摩擦力的方向沿板面与板擦运动方向相反。
(2)把手按在桌面上,用力向前滑动,手有什么感觉 增大手与桌面的压力,感觉有什么不同 这说明什么
答案:桌面阻碍手向前滑动;桌面对手的阻碍作用增大;桌面对手的滑动摩擦力的大小随着压力的增大而增大。
1.定义:两个相互接触的物体,当它们相对滑动时,在接触面上会产生一种阻碍相对运动的力。
2.方向:总是沿着接触面,并且跟物体相对运动的方向相反。
3.影响因素:跟接触面上压力的大小有关;跟接触面的粗糙程度、材质等有关。
4.大小:跟压力的大小成正比,即Ff=μF压,其中μ为动摩擦因数,它的值跟两接触面的性质有关。
二、静摩擦力
(1)某同学用力向右推放于水平地面上的箱子,箱子没动。箱子为何没有向右运动
答案:因为箱子还受到向左的静摩擦力的作用,静摩擦力与人的推力二力平衡。
(2)当某同学增大对箱子的推力,箱子开始运动起来了,这是为什么 当另一同学站上箱子后,原来大小的力推不动箱子了,这又是为什么
答案:因为人对箱子的推力大于箱子所受的最大静摩擦力;压力增加,箱子所受的最大静摩擦力的值也增加,要推动箱子需要用更大的力。
1.定义:相互接触的两个物体之间只有相对运动的趋势,而没有相对运动时的摩擦力。
2.方向:总是跟物体相对运动趋势的方向相反。
3.大小:两物体之间实际产生的静摩擦力F的大小在0与最大静摩擦力Fmax 之间,即 01.判断
(1)有相对运动或有相对运动趋势的物体间一定有摩擦力。( × )
(2)摩擦力的方向一定与接触面上的压力方向垂直。( √ )
(3)在压力一定时,静摩擦力的大小可以变化,但有一个限度。( √ )
2.已知木箱重200 N,木箱与水平桌面间的动摩擦因数为0.2,当木箱在水平桌面上以10 m/s的速度运动时,求木箱所受桌面的摩擦力大小。当木箱以15 m/s的速度运动时,求木箱所受摩擦力大小。当在该木箱上放一相同的木箱,两箱一起以10 m/s的速度运动时,求下面木箱所受桌面的摩擦力的大小。
答案:木箱运动时受到的摩擦力为滑动摩擦力,Ff=μF压=μG=40 N,与速度大小无关;当在该木箱上放一相同的木箱时,下面的木箱所受桌面的滑动摩擦力Ff′=
μF压′=μ·2G=80 N。
探究点一 滑动摩擦力的分析及计算
如图,木块放在木板上,用外力把木板向右抽离,在此过程中:
(1)木块相对地面向什么方向运动 相对于木板向什么方向运动 木块受到的摩擦力方向如何
答案:木块相对地面向右运动;相对木板向左运动;木块受到的滑动摩擦力方向向右,与木块运动方向相同。
(2)滑动摩擦力总是阻碍物体的运动吗
答案:滑动摩擦力一定阻碍物体的相对运动,但与物体的运动方向可能相同,也可能相反,即滑动摩擦力可能是动力,也可能是阻力。
(3)地面受到的摩擦力方向如何
答案:木板相对地面向右运动,地面相对木板向左运动,所以地面受到的滑动摩擦力方向向右。
1.“相对运动”的意义
滑动摩擦力存在于发生相对运动的两个物体之间,“相对运动”可能是因为两个物体一个静止,另一个在运动;也可能是因为两个物体一个运动得快,另一个运动得慢;还可能是因为两个物体运动方向相反。所以发生相对运动的物体不一定处于运动状态,也可能是因为另一个物体在运动造成的。
2.滑动摩擦力的产生条件
两物体 缺一不可
3.滑动摩擦力有无的判断方法
(1)产生条件法:根据滑动摩擦力产生的条件判断,接触且接触面粗糙、相互挤压、相对滑动。
(2)平衡条件法:当相对滑动的物体处于静止或匀速运动状态时,利用二力平衡条件判断。
4.滑动摩擦力的方向
(1)与接触面相切,且与物体相对运动的方向相反。
(2)“相对运动”与“运动”意义不同,摩擦力方向与物体的运动方向可能相同,也可能相反。
5.滑动摩擦力的大小
(1)公式法:根据公式Ff=μF压计算。
①正压力F压是物体与接触面间的压力,大小不一定等于物体受到的重力,与物体具体的受力情况有关。
②动摩擦因数μ与材料和接触面的粗糙程度有关,而与物体间的压力、接触面的大小和物体的运动情况无关。
(2)二力平衡法:物体处于平衡状态(匀速直线运动或静止)时,根据二力平衡条件求解。
[例1]如图所示,将弹簧测力计一端固定钩住铁块A,铁块下面是长木板,实验时拉着长木板沿水平地面向左运动。当铁块A不再随长木板移动时,弹簧测力计示数即铁块A所受摩擦力的大小。在木板运动的过程中,以下说法正确的是( C )
A.铁块A受到的是静摩擦力
B.必须匀速拉动长木板
C.铁块A所受摩擦力的方向向左
D.加速拉动长木板时,弹簧测力计示数变大
解析:因为铁块和木板之间发生了相对滑动,所以这时的摩擦力属于滑动摩擦力,故A错误;滑动摩擦力大小只跟正压力大小、接触面的粗糙程度有关,与物体运动速度大小无关,与是否匀速无关,故B、D错误;滑动摩擦力的方向跟物体相对运动的方向相反,因为木板水平向左运动,所以,铁块相对木板来说是水平向右运动,因此它受到的摩擦力的方向水平向左,故C正确。
分析滑动摩擦力时的几点注意
(1)滑动摩擦力的大小由正压力和动摩擦因数决定,与物体的运动状态、接触面积无关。
(2)滑动摩擦力的方向与“相对运动的方向”相反,并不是与“运动方向”相反。
(3)滑动摩擦力的作用总是阻碍物体的相对运动,而不是阻碍物体的运动,滑动摩擦力可以是动力。
[针对训练1] 用30.0 N的水平力使一只质量为12.0 kg的木板箱在水平地板上向左匀速滑动。木板箱和地板间存在滑动摩擦力,g取10 m/s2,下列叙述正确的是( C )
A.滑动摩擦力方向向左
B.滑动摩擦力为120 N
C.木板箱与地板间的动摩擦因数为0.25
D.木板箱与地板间的正压力为30.0 N
解析:木板箱在水平地板上做匀速直线运动,则此时水平力等于滑动摩擦力,所受滑动摩擦力的大小为30 N,方向向右,故A、B错误;木板箱对地板的压力大小等于重力,即F压=G=120 N,所以动摩擦因数为μ==0.25,故C正确,D错误。
探究点二 静摩擦力的分析及计算
如图所示,手握住瓶子处于静止状态。
(1)瓶子所受静摩擦力的方向怎样
答案:竖直向上。瓶子处于静止状态,手对瓶子的静摩擦力与瓶子受到的重力二力平衡,所以瓶子所受静摩擦力方向竖直向上。
(2)如果手的握力增大,瓶子所受静摩擦力会不会增大,为什么 由此说明什么问题
答案:不会。手的握力增大,但瓶子所受重力不变,由二力平衡知瓶子所受静摩擦力不变,大小仍等于瓶子所受的重力;由此说明静摩擦力的大小与压力大小无关。
1.静摩擦力的产生条件
两物体 缺一不可
2.四种方法判断静摩擦力的有无
(1)条件判断法:接触面之间有压力、粗糙且有相对运动趋势。
(2)假设法:利用假设法进行判断时,可按以下思路进行分析:
(3)力的作用效果判断法:如果相互接触的物体间存在静摩擦力,则必有相应的作用效果——平衡其他作用力或改变受力物体的运动状态,可据此确定有无静摩擦力。
(4)相互作用判断法:利用力的相互作用性,若甲对乙有静摩擦力,则乙对甲也有静摩擦力,据此可以判断物体是否受静摩擦力。
3.静摩擦力的方向
(1)在接触面上,与接触面相切,且与物体相对运动趋势的方向相反。
(2)与物体运动的方向可能相同,也可能相反。
4.静摩擦力的大小
(1)物体处于匀速直线运动或静止时,根据二力平衡条件求解。
(2)静摩擦力大小与压力无关。最大静摩擦力Ffmax略大于滑动摩擦力,无特别说明时可认为两者相等,即Ffmax=μF压,当压力增大时,最大静摩擦力增大。
[例2] (多选)如图所示,一质量为m的木块靠在竖直粗糙的墙壁上,且受到水平力F的作用,下列说法正确的是( ACD )
A.若木块静止,则木块受到的静摩擦力大小等于mg,方向竖直向上
B.若木块静止,当F增大时,木块受到的静摩擦力随之增大
C.若木块静止,当F增大时,最大静摩擦力随之增大
D.若开始时木块静止,当撤去F,木块沿墙壁下滑时,木块不受摩擦力作用
解析:若木块静止,则木块受到的静摩擦力与重力平衡,大小为mg,方向竖直向上,故A正确,B错误;最大静摩擦力随正压力的增大而增大,故C正确;当撤去F时,墙壁与木块间无弹力,则木块不受摩擦力作用,故D正确。
静摩擦力与运动的关系辨析
(1)受静摩擦力作用的物体不一定是静止的,关键决定于相对另一物体是否保持静止且有相对运动趋势。
(2)静摩擦力阻碍的是物体间的相对运动趋势,但不一定阻碍物体的运动,即静摩擦力不一定是阻力。方向与物体运动方向可能相同,也可能相反,还可能成一定夹角。
[针对训练2]
如图,物体A放在水平地面上,在两个水平恒力F1和F2的作用下保持静止。已知F1=8 N,F2=1 N,则( C )
A.若去掉F1,A可能静止
B.若去掉F1,A一定向左运动
C.若去掉F2,A可能静止
D.若去掉F2,A一定向右运动
解析:在F1和F2的作用下,对A有Ff=F1-F2=7 N,方向水平向左,可知最大静摩擦力大于等于7 N。若去掉F1,此时F2与静摩擦力平衡,A一定静止,故A、B错误;若去掉F2,因为最大静摩擦力可能大于8 N,则F1可能和静摩擦力平衡,A可能静止,故C正确,D错误。
自主建构 教材链接
教材第62页“演示”: 请思考: (1)在木块开始移动之前随着拉力F的增大,静摩擦力大小变化吗 若变化,如何变化 (2)木块开始移动时弹簧测力计的示数有何特点 (3)若在木块上增加砝码,木块开始移动时弹簧测力计的示数如何变化 由此得出什么结论 提示:(1)变化;由二力平衡知,静摩擦力的大小随着拉力F的增大而增大。 (2)木块开始移动时弹簧测力计的示数达到最大,即为最大静摩擦力的数值。 (3)弹簧测力计的示数增大;最大静摩擦力随正压力的增大而增大
课时作业
学考基础练
知识点一 滑动摩擦力
1.下列有关滑动摩擦力的说法中,正确的是( B )
A.有压力一定有滑动摩擦力
B.有滑动摩擦力一定有压力
C.滑动摩擦力方向一定与物体的运动方向相反
D.只有运动物体才受滑动摩擦力
解析:产生滑动摩擦力的条件有三个——正压力(相互接触且挤压)、接触面粗糙、发生相对滑动,缺一不可。由产生条件可知,A错误,B正确;滑动摩擦力方向与物体相对运动方向相反,C错误;滑动摩擦力发生于相对滑动的两物体之间,两个物体中可能有一个相对地面是静止的,D错误。
2.装修工人在搬运材料时施加一个水平拉力将其从水平台面上拖出,如图所示,则在匀速拖出的过程中( D )
A.材料与平台之间的接触面积逐渐减小,摩擦力逐渐减小
B.材料与平台之间的接触面积逐渐减小,拉力逐渐减小
C.平台对材料的支持力逐渐减小,摩擦力逐渐减小
D.材料与平台之间的动摩擦因数不变,支持力也不变,因而工人拉力也不变
解析:匀速拖出的过程只能持续到材料重心离开台面的瞬间,故匀速拖出过程,材料对台面的压力不变,材料受到的支持力不变,且在拉动过程中材料与平台之间的动摩擦因数不变,由Ff=μF压可知摩擦力是不变的,故A、C错误;因为材料做匀速直线运动,摩擦力不变,所以工人的拉力是不变的,故B错误,D正确。
3.如图所示,质量为m的木块在水平桌面上的木板上表面滑行,木板静止,它的质量为M=3 m,木板与木块、木板与桌面间的动摩擦因数均为μ,则木板受桌面的摩擦力大小为( A )
A.μmg B.2μmg C.3μmg D.4μmg
解析:木块向左滑动,木板相对于木块向右滑动,木板受到木块向左的滑动摩擦力,大小Ff1=μmg;因为木板静止,根据二力平衡条件,木板受到桌面的静摩擦力方向向右,大小Ff2=Ff1=μmg,故A正确。
4.如图所示,质量m=10 kg的物体与水平面间的动摩擦因数为μ=0.2,在向右滑动的过程中,还受到大小为10 N,方向水平向左的力F作用。则物体所受摩擦力为(g取10 m/s2)( A )
A.20 N,方向水平向左 B.20 N,方向水平向右
C.30 N,方向水平向左 D.30 N,方向水平向右
解析:物体所受的摩擦力为滑动摩擦力,大小为Ff=μ FN,而FN=mg,则Ff=μmg=20 N;根据滑动摩擦力方向与物体相对运动方向相反可知,物体相对水平面向右运动,则其所受滑动摩擦力方向水平向左,故A
正确。
5.如图所示,质量为2 kg的物体放在水平地板上,用一原长为8 cm的轻质弹簧水平拉该物体,当其刚开始运动时,弹簧的长度为11 cm;当弹簧拉着物体匀速前进时,弹簧的长度为10.5 cm。已知弹簧的劲度系数k=200 N/m,g取10 m/s2。求:
(1)物体所受的最大静摩擦力的大小;
(2)物体所受的滑动摩擦力的大小;
(3)物体与地板间的动摩擦因数。
解析:(1)物体所受的最大静摩擦力就等于物体刚开始滑动时的弹簧拉力大小,由胡克定律得
Ff1=kx1=200 N/m×(11-8)×10-2 m=6 N
因此最大静摩擦力大小为6 N。
(2)匀速前进时,弹簧伸长2.5 cm,则弹簧的拉力等于滑动摩擦力,所以滑动摩擦力
Ff2=kx2=200 N/m×2.5×10-2m=5 N。
(3)由滑动摩擦力的计算公式可知,动摩擦因数为
μ===0.25。
答案:(1)6 N (2)5 N (3)0.25
知识点二 静摩擦力
6.关于摩擦力的说法,正确的是( B )
A.摩擦力的方向一定与物体的运动方向相反
B.摩擦力可以是动力,也可以是阻力
C.摩擦力与压力成正比
D.有摩擦力肯定要有弹力,有弹力肯定也有摩擦力
解析:摩擦力的方向与相对运动或相对运动趋势方向相反,故摩擦力方向不一定与物体的运动方向相反,故A错误;摩擦力方向与物体运动方向相同时其为动力,与物体的运动方向相反时其为阻力,故B正确;滑动摩擦力与正压力成正比,静摩擦力介于0到最大静摩擦力之间,故C错误;有摩擦力肯定要有弹力,有弹力不一定有摩擦力,故D
错误。
7.运动员在立定跳远时,脚蹬地起跳瞬间的受力示意图是( A )
解析:脚蹬地瞬间,运动员受到重力、地面对人竖直向上的支持力和地面对人向前的摩擦力,故A正确,B、C、D错误。
8.(多选)如图所示,人在跑步机上跑步时( AD )
A.脚受到的摩擦力是静摩擦力
B.脚受到的摩擦力是滑动摩擦力
C.脚受到的摩擦力方向与人运动的方向相反
D.脚受到的摩擦力方向与人运动的方向相同
解析:人在跑步机上跑步时,脚和跑步机之间无相对滑动,则脚受到的摩擦力是静摩擦力,A正确,B错误;因脚相对跑步机有向后滑动的趋势,则脚受到的静摩擦力向前,即与人运动的方向相同,C错误,D正确。
9.要使重为400 N的桌子从原地水平移动,至少要用200 N的水平推力,桌子从原地移动后,为了使它继续做匀速运动,只要160 N的水平推力就够了。
(1)求最大静摩擦力Ffm和动摩擦因数μ;
(2)如果在静止时用180 N的水平推力向右推桌子,求此时的摩擦力。
解析:(1)至少要用200 N的水平推力才能使桌子水平移动,所以Ffm=200 N
160 N的水平推力使桌子匀速运动,所以桌子所受滑动摩擦力为Ff=160 N
由Ff=μFN得μ===0.4。
(2)因为180 N<200 N,所以没有推动,此时桌子所受摩擦力是静摩擦力,所以Ff′=180 N,方向水平向左。
答案:(1)200 N 0.4 (2)180 N,方向水平向左
选考提升练
10.如图,A、B两物体重力都等于10 N,各接触面动摩擦因数都等于0.3,F1=1 N和F2=2 N的两个水平力分别作用在A和B上,A、B均静止,则A受到的摩擦力和地面对B的摩擦力大小分别为( C )
A.3 N,6 N B.1 N,2 N
C.1 N,1 N D.0 N,1 N
解析:对物体A,因为受到向右的F1作用,从而受到物体B对物体A的静摩擦力,大小等于1 N,方向与F1方向相反。对物体B,水平方向受到向左的F2作用,且受到A对B的向右的静摩擦力1 N,两个力方向相反,所以地面对B的摩擦力为1 N,方向向右,故选C。
11. (2020·北京等级考,11)某同学利用图甲所示装置研究摩擦力的变化情况。实验台上固定一个力传感器,传感器用棉线拉住物块,物块放置在粗糙的长木板上。水平向左拉木板,传感器记录的Ft图像如图乙所示。下列说法正确的是( C )
A.实验中必须让木板保持匀速运动
B.图乙中曲线就是摩擦力随时间的变化曲线
C.最大静摩擦力与滑动摩擦力之比约为10∶7
D.只用图乙中数据可得出物块与木板间的动摩擦因数
解析:为了能研究摩擦力随时间的变化曲线,故物块一直要处于静止状态,则向左的摩擦力一直与轻绳向右的拉力平衡,图乙是轻绳向右的拉力随时间变化的曲线,故图乙也可以反映摩擦力随时间变化的曲线,由图乙可知轻绳向右的拉力先增大后减小,最后趋于不变,故物块先受静摩擦力作用后受滑动摩擦力作用,所以不需要让木板保持匀速运动,故A、B错误;由图可知,最大静摩擦力约为10 N,滑动摩擦力约为7 N,故最大静摩擦力与滑动摩擦力之比约为10∶7,故C正确;根据Ff=μFN,FN=mg可知,由于不知道物块的重,故无法求物块与木板间的动摩擦因数,故D错误。
12.木块甲、乙的重力均为40 N,它们与水平地面间的动摩擦因数均为0.25,夹在甲、乙之间的轻弹簧被压缩了Δx=2.0 cm,弹簧的劲度系数k=400 N/m,系统置于水平地面上静止不动,现用F=15 N的水平力推木块乙,如图所示,力F作用后( D )
A.木块甲所受静摩擦力大小为15 N
B.弹簧的压缩量变为2.5 cm
C.木块乙所受静摩擦力为0
D.木块乙所受静摩擦力大小为7 N
解析:未加F时,木块甲、乙受力平衡,所受静摩擦力等于弹簧的弹力,且弹簧弹力为F1=k·Δx=400 N/m×0.02 m=8 N; 甲、乙木块与地面间的最大静摩擦力至少为Ffm=μG=0.25×40 N=10 N。施加F后,对木块乙有F15 N-8 N=7 N,施加F后,木块甲所受摩擦力仍为静摩擦力,大小为FfA=F1=8 N,故选项D正确。
13.如图所示,皮带运输机将物体匀速地送往高处,下列结论正确的是( D )
A.物体所受摩擦力沿皮带方向向下
B.传送的速度越大,物体受到的摩擦力越大
C.物体所受的摩擦力与传送的速度有关
D.物体受到的静摩擦力为物体随皮带运输机上升的动力
解析:运送过程中,物体相对于传送带有向下运动的趋势,物体所受摩擦力沿皮带向上,与运动方向相同,故A错误;物体匀速上升,由二力平衡可知摩擦力的大小始终等于重力沿斜面向下的分力,保持不变,与传送速度无关,故B、C错误;物体受到的静摩擦力为物体随皮带运输机上升的动力,故D正确。
14.如图所示,质量为m的木块在质量为M的长木板上向右滑行,木块同时受到向右的拉力F的作用,长木板处于静止状态。已知木块与木板间的动摩擦因数为μ1,木板与地面间的动摩擦因数为μ2,以下几种说法正确的是( D )
A.木板受到地面的摩擦力的大小一定是μ2mg
B.木板受到地面的摩擦力的大小一定是μ2(m+M)g
C.当F>μ2(m+M)g时,木板便会开始运动
D.无论怎样改变F的大小,木板都不可能运动
解析:长木板处于静止状态,可知地面对木板的摩擦力等于木块对木板的摩擦力,大小为μ1mg,选项A错误;由于木板相对于地面是否刚要滑动不清楚,地面的静摩擦力不一定达到最大,则木板受到地面的摩擦力的大小不一定是μ2(m+M)g,故B错误;由题干分析可知,木块对木板的摩擦力Ff1不大于地面对木板的最大静摩擦力,当F改变时,Ff1不变,则木板不可能运动,故C错误,D正确。
15.如图所示,一质量不计的弹簧原长为10 cm,一端固定于质量m=
4 kg的物体上,另一端施一水平力F。(设最大静摩擦力与滑动摩擦力相等,物体与水平面间的动摩擦因数为0.45,,弹簧始终在弹性限度内,g取10 m/s2)
(1)当弹簧拉长至14.5 cm时,物体恰好向右匀速运动,弹簧的劲度系数多大
(2)若将弹簧压缩至6 cm,求物体受到的摩擦力大小及方向;
(3)若将弹簧拉长至16 cm,求物体受到的摩擦力大小及方向。
解析:(1)根据胡克定律得,弹簧弹力F1=kx1,
弹簧的伸长量x1=L1-L0=4.5 cm,
由二力平衡得FN=G=40 N,
物体恰好匀速运动,有F1=Ff=μFN=18 N,
联立解得k=400 N/m。
(2)压缩量x2=L0-L2=4 cm,
F2=kx2=16 N,方向水平向左,F2小于最大静摩擦力,故物体仍然静止,受静摩擦力,即Ff′=F2=16 N,方向水平向右。
(3)弹簧的伸长量x3=L3-L0=6 cm,
F3=kx3=24 N>18 N,
则物体受滑动摩擦力,有
Ff″=μFN=18 N,方向水平向左。
答案:(1)400 N/m (2)16 N,方向水平向右
(3)18 N,方向水平向左3 牛顿第三定律
[课标引领]
学业质量水平要求
合格性考试 1.形成初步的作用力与反作用力概念,能用牛顿第三定律解决实际生活中的相关问题。 2.能够通过现代仪器,设计实验,验证牛顿第三定律的正确性
选择性考试 1.理解牛顿第三定律内容,会应用牛顿第三定律解释日常生活中看似矛盾的现象。 2.能区分平衡力与作用力、反作用力,并通过转换对象,进行问题求解。 3.能正确的对物体进行受力分析
一、作用力和反作用力
1.力是物体对物体的作用。只要谈到力,就一定存在着受力物体和施力物体。
2.两个物体之间的作用总是相互的。物体间相互作用的这一对力称为作用力和反作用力。作用力和反作用力总是互相依赖,同时存在的。我们把其中任何一个力叫作作用力,另一个力叫作反作用力。
二、牛顿第三定律
以卵击石,鸡蛋“粉身碎骨”,石头却“安然无恙”。是因为鸡蛋对石头的作用力小,而石头对鸡蛋的作用力大吗
答案:不是,鸡蛋与石头相撞击时,鸡蛋对石头的力与石头对鸡蛋的力是一对作用力和反作用力。根据牛顿第三定律,这两个力是大小相等的,但是蛋壳能承受的力较小,石头能承受的力较大,故鸡蛋会破碎,石头安然无恙。
1.实验探究:如图,两个弹簧测力计A、B连接在一起,用手拉A,结果发现两个弹簧测力计的示数是相等的。改变拉力,弹簧测力计的示数也随之改变,但两个弹簧测力计的示数总是相等,这说明作用力和反作用力大小相等,方向相反。
2.牛顿第三定律:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。
三、物体受力的初步分析
如图所示,一位同学用水平推力F把一块木块紧压在竖直墙上,使木块处于静止状态。请在图中画出木块所受的力。在此情境中出现了几对平衡力
答案:木块受力如图所示。有两对平衡力。木块受到的重力G和木块受到墙对它的静摩擦力F静、手推木块的力F和墙对木块的弹力FN。
1.分析思路:一是根据物体运动状态的变化来分析和判断其受力情况;二是根据各种力的特点,从相互作用的角度来分析物体的受力。
2.常遇到的力:重力、弹力、摩擦力。
3.区分某一个力的平衡力和反作用力
(1)一对平衡力:作用在同一物体上的两个力,大小相等、方向相反,作用在同一条直线上,一对平衡力不一定是同一种类的力。
(2)一对作用力和反作用力:同一相互作用中的两个力,分别作用在两个物体上,且同时产生,同时消失,一定是同一种类的力。
1.判断
(1)物体间先有作用力,然后才有反作用力。( × )
(2)物体对桌面的压力与桌面对物体的支持力是一对相互平衡的力。( × )
(3)受力分析时,只分析物体受到的力。( √ )
2.如图所示,假如你在静止于水面的小船上从船头走向船尾,小船会向什么方向运动 试解释这一现象。
答案:小船会沿与人运动的方向相反的方向运动。当人由静止从船头走向船尾时,人与船发生相互作用,人受到的摩擦力方向从船头指向船尾,根据牛顿第三定律,船受到摩擦力的方向从船尾指向船头。由于船受到水的阻力较小,船受到的合力方向从船尾指向船头,故船的运动方向与人的运动方向相反。
3.一物体悬挂在弹簧测力计上,并处于静止状态。请证明弹簧测力计的示数等于物体受到的重力的大小。
答案:弹簧测力计读数等于物体对弹簧的拉力大小。设物体对弹簧的拉力大小为F,物体受到弹簧的拉力为F′,物体受到的重力为G,物体静止时,根据二力平衡条件有F′=G。
F与F′是作用力和反作用力,根据牛顿第三定律F=F′,所以F=G,即弹簧测力计的示数等于物体受到的重力的大小。
探究点一 对牛顿第三定律的理解
“掰腕子”是比较臂力大小的一种常见比赛。在一次“掰腕子”比赛中,甲轻松地胜了乙,那么我们就说甲对乙的力大于乙对甲的力,这种说法对吗
答案:不对;甲取胜的原因是甲对乙的力大于乙的承受能力,但是甲对乙的力与乙对甲的力大小一定相等。
1.表达式:F=-F′,负号表示作用力F与反作用力F′的方向相反。
2.作用力与反作用力的“四同”“三异”
四同 等大 大小总是相等
共线 作用在同一条直线上
同时 同时产生、同时变化、同时消失
同性质 同一性质的力
三异 异向 方向相反
异体 作用在不同的物体上
异效 效果不能相互抵消
[例1] 如图所示,马拉车在水平路面上前进,下列说法正确的是( C )
A.马对车的拉力大于车对马的拉力
B.马对车的拉力小于车对马的拉力
C.马对车的拉力等于车对马的拉力
D.只有当马车匀速前进时,马对车的拉力才等于车对马的拉力
解析:马向前拉车的力和车向后拉马的力是一对作用力与反作用力,它们总是大小相等、方向相反,与运动状态没有关系,故A、B、D错误,C正确。
正确理解牛顿第三定律中“总是”的含义
“总是”是强调对于任何物体,在任何情况下,作用力与反作用力的关系都成立。
(1)与物体的大小、形状无关。大物体与大物体之间,大物体与小物体之间,任何形状的物体之间,其相互作用力总是大小相等、方向相反。
(2)与物体的运动状态无关。静止的物体之间、运动的物体之间、静止与运动的物体之间,其相互作用力总是大小相等、方向相反。
(3)不存在先后的问题。作用力与反作用力的产生和消失总是同时的。两者中若有一个力产生或消失,则另一个力必然同时产生或消失。
[针对训练1] (多选)在“探究作用力与反作用力的关系”实验中,如图甲所示,某同学用两个力传感器进行实验,通过计算机得到图乙。下列由图乙得到的实验结论中正确的是( ABC )
A.两传感器间的作用力与反作用力大小相等
B.两传感器间的作用力与反作用力方向相反
C.两传感器间的作用力与反作用力同时变化
D.两传感器间的作用力与反作用力作用在同一物体上
解析:根据图像可知,两传感器间的作用力与反作用力总是大小相等,方向相反,故A、B正确;作用力与反作用力同时产生,同时变化,同时消失,故C正确;作用力与反作用力作用在不同的物体上,故D错误。
探究点二 一对平衡力与一对作用力和反作用力的比较
如图所示,放于水平面上的木块受到重力G和支持力F支的作用,木块对水平面的压力为F压。
(1)重力G和支持力F支的大小、方向存在什么关系 它们分别作用在什么物体上 性质相同吗 属于一对什么力
答案:G和F支大小相等、方向相反,作用在同一物体上,都作用在木块上,二者性质不同,是一对平衡力。
(2)支持力F支和压力F压的大小、方向存在什么关系 它们分别作用在什么物体上 性质相同吗 属于一对什么力
答案:F支和F压大小相等、方向相反,作用在两个不同物体上,F支作用在木块上,F压作用在水平面上,二者性质相同,是一对作用力和反作用力。
 一对相互作用力与一对平衡力之间的比较
一对相互作用力 一对平衡力
共同点 大小相等、方向相反、且作用在同一条直线上
不 同 点 作用对象 两个力分别作用在两个物体上 两个力作用在同一个物体上
依赖关系 相互依存,不可单独存在,同时产生,同时变化,同时消失 无依赖关系,撤除一个,另一个可依然存在
力的性质 一定是同性质的力 不一定是同性质的力
作用 效果 因为一对作用力与反作用力作用在两个物体上,各自产生作用效果,故不能作为使物体平衡的条件 一对平衡力的作用效果是使物体处于平衡状态
[例2]一根轻绳的上端悬挂在天花板上,下端挂一灯泡,则( C )
A.灯泡受的重力和灯泡对绳的拉力是一对平衡力
B.灯泡受的重力和绳对灯泡的拉力是一对作用力和反作用力
C.灯泡对绳的拉力和绳对灯泡的拉力是一对作用力和反作用力
D.绳对天花板的拉力和天花板对绳的拉力是一对平衡力
解析:灯泡受的重力和绳对灯泡的拉力是一对平衡力,选项A、B错误;灯泡对绳的拉力和绳对灯泡的拉力是一对作用力和反作用力,绳对天花板的拉力和天花板对绳的拉力是一对作用力和反作用力,选项C正确,D错误。
区分作用力、反作用力和平衡力的方法
区分作用力、反作用力和平衡力,最简单的方法是看涉及的物体的个数。
(1)作用力与反作用力只涉及两个相互作用的物体,是甲物体对乙物体,乙物体对甲物体的关系。
(2)平衡的一对力涉及三个物体,即两个施力物体同时作用在一个受力物体上。
[针对训练2] (多选)2019年1月3日10时26分,我国“嫦娥四号”探测器成功着陆在月球背面南极附近的预选着陆区,人类探测器首次登陆月球背面。在着陆过程最后阶段,“嫦娥四号”开启发动机,先悬停在距月面100 m高处,再以较小速度到着陆点上方4 m处,最终关闭发动机以自由落体方式完美着陆在月面,关于该探测器从距月面上方100 m高处缓慢下降到着陆点上方4 m处的过程中,下列说法正确的是( CD )
A.探测器受到喷射气体的反冲力与自身重力是一对相互作用力
B.探测器受到喷射气体的反冲力与自身重力是一对平衡力
C.探测器对喷射气体的力与喷射气体对探测器的反冲力是一对相互作用力
D.探测器对喷射气体的力与喷射气体对探测器的反冲力大小相等
解析:探测器受到喷射气体的反冲力的受力物体是探测器,探测器自身重力的受力物体也是探测器,不是一对相互作用力,故A错误;探测器下降的过程中没有说明运动的状态,所以探测器受到喷射气体的反冲力与自身重力不一定是一对平衡力,故B错误;探测器对喷射气体的力与喷射气体对探测器的反冲力是一对相互作用力,它们大小相等,故C、D正确。
探究点三 物体的受力分析
如图所示是滑雪运动员沿斜坡下滑的过程,有人说:运动员受重力、斜坡的支持力、下滑力和运动员对斜坡的压力四个力的作用,对吗
答案:不对。运动员受重力、斜坡的支持力和摩擦力,如图所示,重力产生使运动员沿斜坡向下滑的效果,不是运动员受到的力,不存在下滑力。
1.受力分析:把指定物体(研究对象)在特定的物理环境中受到的所有力找出来,并画出受力示意图,这就是受力分析。
2.受力分析的一般顺序
一般先分析重力,然后分析弹力,环绕物体一周,找出跟研究对象接触的物体,并逐个分析这些物体对研究对象是否有弹力作用;再分析摩擦力,最后是其他力。
3.受力分析常用的方法
(1)整体法与隔离法
整体法 隔离法
概念 将加速度相同的几个物体作为一个整体来分析的方法 将研究对象与周围物体分隔开分析的方法
选用 原则 研究系统外的物体对系统整体的作用力 研究系统内物体之间的相互作用力
注意 问题 受力分析时不要再考虑系统内物体间的相互作用力 一般隔离受力较少的物体
(2)假设法:在受力分析时,若不能确定某力是否存在,可先对其作出存在或不存在的情况假设,然后再就该力存在与否对物体运动状态影响的不同来判断该力是否存在。
4.受力分析的步骤
[例3] 如图所示,A物体沿竖直墙自由下滑,B、C、D物体均静止,各接触面均粗糙。下列说法正确的是( C )
A.A物体受到三个力的作用
B.B物体受到四个力的作用
C.C物体受到三个力的作用
D.D物体受到三个力的作用
解析:A物体沿竖直墙自由下滑,“自由”说明A物体与竖直墙之间没有弹力和摩擦力,因此A物体只受重力作用,故A错误;B物体处于静止状态,受到重力、弹力、摩擦力三个力的作用,故B错误;C物体受到重力和两个绳子的拉力,故C正确;D物体处于静止状态,受到重力、支持力、绳子的拉力和静摩擦力四个力的作用,故D错误。
受力分析要注意的五个问题
(1)研究对象的受力图,通常只画出根据性质命名的力。
(2)区分内力和外力:对几个物体组成的系统进行受力分析时,这几个物体间的作用力为内力,不能在受力图中出现;当把其中的某一物体单独隔离分析时,原来的内力变成外力,要画在受力图上。
(3)防止“添力”:找出各力的施力物体,若没有施力物体,则该力一定不存在。
(4)防止“漏力”:严格按照重力、弹力、摩擦力、其他力的步骤进行分析是防止“漏力”的有效办法。
(5)受力分析时还要密切注意物体的运动状态,运用平衡条件或牛顿运动定律判定未知力的有无及方向。
[针对训练3] (多选)如图所示,在粗糙的水平面上,物体A向着弹簧运动,且使弹簧压缩,则关于物体A的受力情况,下列说法正确的是( BD )
A.受重力、支持力、动力、摩擦力和弹簧的弹力
B.受重力、支持力、摩擦力和弹簧的弹力
C.弹簧的弹力是动力,而摩擦力是阻力
D.弹簧的弹力和摩擦力均与物体运动方向相反
解析:选取A为研究对象,对它进行受力分析可知,物体A受到重力、水平面对A的支持力及摩擦力、弹簧的弹力,故选项A错误,B正确;弹簧处于压缩状态,A受到的弹力方向向右,与运动的方向相反,所以是阻力;滑动摩擦力的方向与物体A运动的方向相反,是阻力,弹簧弹力与摩擦力的方向一致,都是水平向右的,故选项C错误,D正确。
自主建构 教材链接
教材第64页“问题”提示:他们施加给对方的力大小相等
课时作业
学考基础练
知识点一 对牛顿第三定律的理解
1.关于牛顿第三定律,下面说法中正确的是( C )
A.两物体间先有作用力,后有反作用力
B.作用力与反作用力可以是不同性质的力
C.作用力与反作用力同时产生,同时消失
D.作用力与反作用力的效果相互抵消
解析:作用力和反作用力具有同时性,同时产生,同时变化,同时消失,故A错误,C正确;作用力和反作用力必须是同一种性质的力,故B错误;作用力与反作用力大小相等,方向相反,作用在同一条直线上,作用在两个物体上,故其效果不能相互抵消,故D错误。
2.关于力,以下说法中正确的是( D )
A.只有接触物体之间才可能有相互作用力
B.马拉车加速前进时,马拉车的力大于车拉马的力
C.地球上的物体受到重力作用,这个力没有反作用力
D.作用力和反作用力产生的效果没有制约关系
解析:两个不接触的物体也可以产生力,例如磁铁,故A错误;马拉车的力和车拉马的力是一对作用力与反作用力,大小相等,故B错误;重力的反作用力是物体对地球的吸引力,故C错误;作用力和反作用力虽然大小相等,方向相反,作用在同一条直线上,但它们作用在两个物体上,所产生的效果没有制约关系,故D正确。
3.竹蜻蜓是一种中国传统的民间儿童玩具,流传甚广。如图所示,竹蜻蜓由竹柄和“翅膀”两部分组成。玩儿时,双手一搓竹柄,然后双手松开,竹蜻蜓就会旋转着飞上天空,过一会儿落下来。松手后,关于竹蜻蜓和空气间的相互作用力,下列说法中正确的是( C )
A.竹蜻蜓对空气的作用力大于空气对竹蜻蜓的作用力
B.竹蜻蜓对空气的作用力小于空气对竹蜻蜓的作用力
C.竹蜻蜓对空气的作用力等于空气对竹蜻蜓的作用力
D.竹蜻蜓对空气的作用力与空气对竹蜻蜓的作用力方向相同
解析:竹蜻蜓对空气的作用力与空气对竹蜻蜓的作用力是一对作用力与反作用力,根据牛顿第三定律,它们大小相等、方向相反,故选C。
4.电动平衡车,又叫体感车、思维车、摄位车等。市场上主要有独轮和双轮两类。如图,一电动平衡车突然在水平面上做加速直线运动,人对平衡车的压力大小发生变化吗 为什么
解析:根据牛顿第三定律可知,人对平衡车的压力等于平衡车对人的支持力。因人在竖直面内处于平衡状态,即平衡车对人的支持力与人受到的重力二力平衡,故人对平衡车的压力不因为平衡车的加速而
变化。
答案:见解析
知识点二 一对平衡力与一对作用力和反作用力的比较
5.如图所示,人站立在体重计上,下列说法正确的是( B )
A.人对体重计的压力和体重计对人的支持力是一对平衡力
B.人对体重计的压力和体重计对人的支持力是一对作用力和反作
用力
C.人所受的重力和人对体重计的压力是一对平衡力
D.人所受的重力和人对体重计的压力是一对作用力和反作用力
解析:人对体重计的压力和体重计对人的支持力是一对作用力和反作用力,故A错误,B正确;人所受的重力和人对体重计的压力方向相同,既不是相互作用力,也不是平衡力,故C、D错误。
6.划船时,船桨向后划水,船向前运动。下列说法正确的是( D )
A.船桨对水的力大于水对船桨的力
B.船桨对水的力小于水对船桨的力
C.船桨对水的力和水对船桨的力是一对平衡力
D.船桨对水的力和水对船桨的力是一对作用力与反作用力
解析:船桨对水的力和水对船桨的力是一对作用力与反作用力,大小相等,方向相反,作用在两个物体上,不能平衡,故D正确。
7.如图所示,所受重力为G的压路机在水平路面上缓慢行驶,路面对压路机的支持力为FN,压路机对路面的压力为F压,关于G、FN、F压,下列说法正确的是( B )
A.F压大于FN
B.F压与G大小相等
C.F压和FN是一对平衡力
D.FN和G是一对作用力和反作用力
解析:路面对压路机的支持力FN和压路机对路面的压力F压是一对作用力和反作用力,FN与G是一对平衡力,故C、D错误;又由牛顿第三定律和二力平衡条件可知,F压与FN大小相等,FN与G大小相等,故F压与G大小相等,故A错误,B正确。
知识点三 物体受力的初步分析
8.黑板擦被竖直悬挂着的磁性黑板紧紧吸住不动,下列说法正确的是( A )
A.黑板擦受到四个力的作用,其中有三个力的施力物体是黑板
B.黑板擦与黑板间在水平方向有一对相互作用力
C.磁力和弹力是一对作用力与反作用力
D.摩擦力大于重力,黑板擦才不会掉下来
解析:黑板擦受到四个力,重力G,施力物体是地球;支持力FN、摩擦力Ff、磁力F,这三个力的施力物体都是磁性黑板,故A正确;黑板对黑板擦有支持力,则黑板擦对黑板有压力,这两个力是一对相互作用力;黑板对黑板擦有磁力,反过来,黑板擦对黑板有大小相等的磁力,这两个力是一对相互作用力,所以水平方向有两对相互作用力,故B错误;黑板擦所受的磁力和弹力是一对平衡力,大小相等,故C错误;只有黑板擦所受的最大静摩擦力大于等于重力,黑板擦才不会掉下来,故D
错误。
9.下列处于静止状态的物体的受力分析图示中,正确的是( C )
解析:A图中小球只受两个力,重力、水平面的支持力,左侧木块对小球没有弹力,如有,小球不能保持平衡,将向右运动,故A错误;B图中物体有向右运动的趋势,所受静摩擦力向左,故B错误;C图中物体受到重力、汽车的支持力,汽车向左加速运动,物体相对汽车有向右运动的趋势,受到的静摩擦力向左,故C正确;D图中小球受到挡板和斜面的支持力,方向均垂直于接触面,故D错误。
选考提升练
10.人静止在地面上时,人和地球间的作用力和反作用力有( B )
A.1对 B.2对 C.3对 D.4对
解析:人静止在地面上时,受到地球对人的吸引力、支持力,人对地球的吸引力与地球对人的吸引力是一对作用力和反作用力;人对地面的压力和地面对人的支持力是一对作用力和反作用力,共有2对,故B
正确。
11.人在沼泽地行走容易下陷,下陷时( B )
A.人对沼泽地地面的压力大于沼泽地地面对人的支持力
B.人对沼泽地地面的压力等于沼泽地地面对人的支持力
C.人对沼泽地地面的压力小于沼泽地地面对人的支持力
D.人的重力等于沼泽地地面对人的支持力
解析:人对沼泽地地面的压力和沼泽地地面对人的支持力是作用力与反作用力,故二力一定相等,故A、C错误,B正确;对人分析,人受到重力和支持力,由于下陷,故重力大于支持力,则人的重力大于沼泽地地面对人的支持力,故D错误。
12.(多选)机场常用传送带为顾客运送行李,传送带运送行李主要有水平运送和沿斜面运送两种形式,如图所示,a为水平传送带,b为倾斜传送带。当行李随传送带一起匀速运动时,下列判断正确的是( AC )
A.a情形中的行李受到重力、支持力
B.a情形中的行李受到重力、支持力和摩擦力作用
C.b情形中的行李受到重力、支持力和摩擦力作用
D.b情形中的行李所受支持力与重力是一对平衡力
解析:因为行李匀速运动,所以a情形中行李只受重力和支持力,A正确,B错误;b情形中行李除受竖直向下的重力和垂直传送带斜向上的支持力外,还必须受到一个沿传送带向上的静摩擦力作用,C正确,D错误。
13.(多选)如图所示,我国有一种传统的民族体育项目叫作“押加”,实际上相当于两个人拔河,如果甲、乙两人在“押加”比赛中,甲获胜,则下列说法中正确的是( BD )
A.甲对乙的拉力大小大于乙对甲的拉力大小,所以甲获胜
B.当甲把乙匀速拉过去时,甲对乙的拉力大小等于乙对甲的拉力大小
C.当甲把乙加速拉过去时,甲对乙的拉力大小大于乙对甲的拉力大小
D.甲对乙的拉力大小始终等于乙对甲的拉力大小,只是地面对甲的摩擦力大于地面对乙的摩擦力,所以甲获胜
解析:甲拉乙的力与乙拉甲的力是一对作用力与反作用力,大小相等;即不管哪个获胜,甲对乙的拉力大小始终等于乙对甲的拉力大小,只是地面对甲的摩擦力大于地面对乙的摩擦力,所以甲才能获胜,故A、C错误,B、D正确。
14.画出如图中物体A所受力的示意图,并写出力的名称和施力物体:(1)物体A静止,接触面光滑;(2)A沿固定粗糙斜面上滑;(3)A沿粗糙水平面滑行;(4)接触面光滑,A静止。
解析:(1)物体A受重力G、推力F、地面的支持力FN、墙壁对A向左的弹力FN′,施力物体分别是地球、推A的物体、地面、墙壁。
(2)物体A受竖直向下的重力G、垂直于斜面向上的支持力FN、沿斜面向下的滑动摩擦力Ff,施力物体分别是地球、斜面、斜面。
(3)物体A受重力G、支持力FN、滑动摩擦力Ff,施力物体分别是地球、水平面、水平面。
(4)物体A受重力G、拉力FT、弹力FN,施力物体分别是地球、绳子、墙壁。
答案:见解析
15.建筑工人用如图所示的定滑轮装置运送建筑材料。质量为70.0 kg的工人站在地面上,通过定滑轮将20.0 kg的建筑材料以2 m/s的速度匀速拉升,忽略绳子和定滑轮的质量及定滑轮的摩擦,则工人对地面的压力大小为多少 (g取10 m/s2)
解析:对建筑材料进行受力分析,根据二力平衡的条件有F=mg
解得绳子的拉力大小F=200 N,
然后对工人进行受力分析,由平衡条件得
Mg=F+FN,
解得地面对工人的支持力FN=500 N,
根据牛顿第三定律可知,工人对地面的压力大小为500 N。
答案:500 N4 力的合成和分解
[课标引领]
学业质量水平要求
合格性考试 1.知道力的合成和分解的概念,能区分合力和分力,知道二者的等效替代关系。 2.知道力的分解是力的合成的逆运算,能解决简单的物理问题
选择性考试 1.会区分合力和分力,知道等效替代法。并能用作图法和计算法求合力或分力。 2.能理解力的合成和分解的概念,理解平行四边形定则并学会运用
一、合力和分力
如图所示,一个成年人或两个孩子均能提起相同质量的一桶水。
(1)那么该成年人用的力与两个孩子用的力作用效果是否相同 二者能否等效替换
答案:效果相同;能等效替换。
(2)两个孩子用的力是共点力吗
答案:是。
1.共点力
几个力如果都作用在物体的同一点,或者它们的作用线相交于一点,这几个力就叫作共点力。
2.合力与分力
假设一个力单独作用的效果跟某几个力共同作用的效果相同,这个力就叫作那几个力的合力,这几个力叫作那个力的分力。
3.合力与分力的关系
合力作用的效果与分力作用的效果相同。
二、力的合成和分解
两人同拉(或推)一辆车如图所示,每人用力的大小都是100 N,车受到的合力一定是200 N吗
答案:不一定;两个力的合力应根据平行四边形定则,用作图或者计算的方法求得。
1.力的合成:求几个力的合力的过程。
2.力的分解:求一个力的分力的过程。
3.
平行四边形定则:求两个力的合成,如果以表示这两个力的有向线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向,如图所示。F表示F1与F2的合力。
4.如果没有限制,同一个力F可以分解为无数对大小、方向不同的分力。
5.两个以上共点力的合力的求法:先求出任意两个力的合力,再求出这个合力跟第三个力的合力,直到把所有的力都合成进去,最后得到的结果就是这些力的合力。
三、矢量和标量
(1)温度是标量还是矢量 +2 ℃和-5 ℃哪一个温度高
答案:温度是标量,其正负表示相对大小,所以+2 ℃比-5 ℃温度高。
(2)位移是既有大小又有方向的物理量,而温度、质量是只有大小没有方向的物理量,如何划分它们呢
答案:既有大小又有方向的物理量为矢量,位移是矢量;只有大小没有方向的物理量为标量,温度、质量为标量。
1.矢量:既有大小又有方向,相加时遵从平行四边形定则的物理量。
2.标量:只有大小,没有方向,相加时遵从算术法则的物理量。
注意:矢量和标量的根本区别在于它们的运算法则不同,而不是有无方向。
1.判断
(1)合力与分力同时作用在一个物体上。(   )
(2)由力的平行四边形定则可知,合力可能小于分力。( √ )
(3)把已知力F分解为两个分力F1与F2,此时物体受到F、F1、F2三个力的作用。(   )
2.在学过的物理量中,分别指出三个矢量和三个标量,并说出它们的运算规则。当几个矢量同在一条直线上时,它们的合成有什么特点
答案:位移、速度、力等是矢量,其运算遵循平行四边形定则;时间、质量、路程等是标量,其运算遵循算术法则。当几个矢量同在一条直线上时,它们的合成仍然遵循平行四边形定则,可在规定正方向后用正负号表示矢量的方向,将矢量求和转化为代数运算,计算结果的正负表示合矢量的方向。
3.如图所示,在单杠上做“引体向上”动作时,两臂的夹角越大,身体上升就越困难,请解释原因。
答案:两臂张开一定角度做“引体向上”动作时,可将人所受重力分解为沿手臂方向的两个分力,由于人的重力不变,两臂的夹角越大时,两个分力越大,要使人上升,双臂用力要更大,更难以将身体提起来。
探究点一 合力与分力的关系
用硬纸板剪出五个宽度相同的长条,其中四个两两长度分别相等,第五个较长些,然后用螺丝铆住(AE与BC、CD不要铆住),如图所示。其中AB表示一个分力,AD表示另一个分力,AC表示合力。
(1)改变∠BAD的大小,观察两分力间的夹角变化时合力大小如何变化
答案:合力随着两分力间夹角的增大而减小,随着两分力间夹角的减小而增大。
(2)合力一定大于其中一个分力吗
答案:不一定。合力与分力的大小符合三角形三边的关系,由几何知识知,三角形两边之和大于第三边,两边之差小于第三边,因此合力大小的范围|F1-F2|≤F≤F1+F2。例如F1=5 N,F2=5 N,合力0 N≤F≤10 N,合力F的最小值为0 N,比任何一个分力都小。
1.合力与分力的三性
2.合力与两个分力的大小关系
(1)两分力大小不变时,合力F随两分力夹角θ的增大而减小,随θ的减小而增大。(0°≤θ≤180°)
(2)合力大小的范围为|F1-F2|≤F≤F1+F2。合力可以大于、等于两分力中的任何一个力,也可以小于两分力中的任何一个力。
最大值 当θ=0时,两力同向,Fmax=F1+F2
最小值 当θ=180°时,两力反向,Fmin=|F1-F2|
(3)如图所示,当F1、F2间夹角为θ时,
F=。
3.三角形定则
以表示两个力F1、F2的有向线段为邻边作平行四边形,将F2平移至对面的边,合力方向为F1的起点指向F2的终点,像这样把两个力首尾相接从而求出合力的方法称为三角形定则。
[例1]关于合力和分力的关系,下列说法正确的是( D )
A.合力总比分力中的任何一个要大
B.两个力合成的力,如果其中的一个分力减小,合力就会减小
C.分力可以比合力大,但是不可能两个分力都大于合力
D.合力可以比分力小,也可以比分力大
解析:根据平行四边形定则知,合力可能比分力大,可能比分力小,可能与分力相等,故A、C错误,D正确;两个力合成,其中一个分力减小,合力不一定减小,比如两个分力方向相反,其中一个分力减小,合力可能增大,故B错误。
理解合力、分力的关键点
(1)合力与分力是等效替代关系,对物体进行受力分析时,不能同时分析合力与分力。
(2)合力可能大于某一分力,可能小于某一分力,也可能与某一分力大小相等。
[针对训练1]用两根绳子悬挂同一相框,相框处于静止状态,则下列如图所示的四种方法中,每根悬绳所受拉力最小的是( A )
解析:相框受重力和两根绳子的拉力处于静止状态,所受合力等于零,可知两根绳子拉力的合力等于重力,绳子的夹角越小,绳子拉力越小,故A正确,B、C、D错误。
探究点二 根据力的合成求合力
港珠澳大桥于2018年10月24日上午9时正式通车,它是世界上最长的跨海大桥,桥梁采用斜拉索式,假设斜拉桥中某对钢索与竖直方向的夹角都是α,每根钢索中的拉力都是F。这对钢索对塔柱形成的合力大小能直接相加吗 两条钢索对塔柱形成的合力如何计算
答案:不能;因为两条钢索的拉力不在同一方向上,把两条钢索的拉力看成沿钢索方向的两个分力,以它们为邻边画出一个平行四边形,两分力所夹的对角线就表示它们的合力。
1.作图法
根据平行四边形定则用作图工具作出平行四边形,然后用测量工具测量出合力的大小、方向,具体操作过程如下:
2.计算法
根据平行四边形定则作出分力及合力的示意图,然后由几何知识求解对角线所对应的力,即为合力。求合力的三种常见情况如表所示。
类型 作图 合力的计算
两分力相互垂直 大小:F= 方向:tan θ=
两分力大小相等,夹角为θ 大小:F=2F1cos 方向:F与F1夹角为 (当θ=120° 时,F1=F2=F)
合力与其中一个分力垂直 大小:F= 方向:sin θ=
[例2]
如图所示,两个人共同用力将一个牌匾拉上墙头。其中一人用了450 N的拉力,另一个人用了600 N的拉力,如果这两个人所用拉力的夹角是90°,求它们的合力。
解析:法一 作图法
如图所示,用图示中的线段表示150 N的力,用一个点O代表牌匾,依题意作出力的平行四边形。用刻度尺量出平行四边形的对角线长为图示线段的5倍,故合力大小为F=150 N×5=750 N,用量角器量出合力F与F1的夹角θ=53°。
法二 计算法
设F1=450 N,F2=600 N,合力为F。
由于F1与F2间的夹角为90°,根据勾股定理得
F= N=750 N,
合力F与F1的夹角θ的正切tan θ==≈1.33,
所以θ=53°。
答案:750 N,方向与较小拉力的夹角为53°
作图法与计算法的比较
(1)作图法简单、直观,是物理学中常用的方法之一,但不够精确。
(2)应用作图法时,各力必须选定同一标度,并且标度的比例适当,分清虚线和实线。
(3)应用计算法时,要画出力的合成示意图。
(4)两力夹角为特殊角(如120°、90°等)时,应用计算法求合力更简单。
[针对训练2]
如图所示,水平横梁一端A插在墙壁内,另一端装有一小滑轮B。一轻绳的一端C固定于墙壁上,另一端跨过滑轮后悬挂一质量为m=10 kg的重物,∠CBA=30°,则滑轮受到绳子的作用力大小为(g取10 m/s2)( D )
A.50 N B.60 N C.120 N D.100 N
解析:
轻绳跨过滑轮,BC段、BD段拉力F1=F2=mg=100 N,夹角为120°,根据平行四边形定则,二力合成如图所示。由几何关系得∠EBC=60°,故F1、F2的合力F=2F1cos 60°=100 N,即滑轮受到绳子的作用力大小为100 N,选项D正确。
[针对训练3] 上题中,若将横梁一端A处改为铰链,绳子系于横梁另一端B处,此时横梁恰好水平,如图所示。则AB杆和BC绳所受弹力分别为多大
解析:
AB杆和BC绳合力与BD绳的拉力大小相等,方向相反,即FBC==200 N,
FAB=FBDtan 60°=100 N。
答案:100 N 200 N
探究点三 力的分解
如图甲所示,在一个直角木支架上,用塑料垫板做斜面。将一用橡皮筋拉着的小车放在斜面上,如图乙,观察塑料垫板和橡皮筋的形变。
(1)小车重力对斜面和橡皮筋产生了哪些作用效果 如果没有小车重力的作用,还会有这些作用效果吗
答案:(1)斜面上小车重力产生了两个效果:一是使小车紧压斜面,二是使小车沿斜面下滑,拉伸橡皮筋。不会。
(2)请沿斜面方向和垂直于斜面方向将重力分解。
答案:重力的分解如图所示。
1.无限制条件的力的分解
一个力分解为两个力,从理论上讲有无数组解。因为以同一条线段为对角线的平行四边形有无穷多个(如图甲、乙所示)。
由图(乙)知,将已知不变力F分解为两个等大的分力时,两分力间的夹角越大,两分力越大。
2.有限制条件的力的分解
已知条件 条件 示意图 分解 示意图 作图说明 解的 情况
合力、两个分力的方向 过F的末端作两分力的平行线组成平行四边形
合力、一个分力的大小和方向 由F1末端到F末端作有向线段,该线段表示F2
合力、一个分力的大小和另一个分力的方向 以F的末端为圆心、F2的大小为半径画圆,与F1方向的射线无交点 无解
以F的末端为圆心、F2的大小为半径画圆,与F1方向的射线只有一个交点
以F的末端为圆心、F2的大小为半径画圆,与F1方向的射线只有一个交点
以F的末端为圆心、F2的大小为半径画圆,与F1方向的射线有两个交点 两解
[例3] (多选)把一个已知力F分解,要求其中一个分力F1跟F成30°角,而大小未知;另一个分力F2=F,但方向未知,则F1的大小可能是( AD )
A.F B.F C.F D.F
解析:因Fsin 30°F11=FOA-FAB=F,F12=FOA+FAC=F,故A、D正确。
平行四边形定则在力的分解中的应用技巧
(1)力的分解时有解或无解,关键看代表合力的对角线与给定的代表分力的有向线段是否能构成平行四边形(或三角形),若能,即有解;若不能,则无解。
(2)画矢量图是解决力的分解问题的有效途径,特别是涉及“最大”“最小”等极值问题时,可多画几种不同情形的图,通过比较鉴别正确情境。
[针对训练4]
(多选)如图所示,将质量为m的小球a用细线悬挂于O点,用力F拉小球a,使整个装置处于平衡状态,且悬线与竖直方向的夹角为θ=30°。则当F的方向不同时其大小可能为( ABD )
A.mg B.mg
C.mg D.mg
解析:
以小球为研究对象进行受力分析,小球受重力mg,大小方向已知;受绳子的拉力,方向已知,大小未知,画出力的平行四边形,如图所示。当F与绳子Oa方向垂直时,F有最小值,最小值为F=mgsin θ=mg;当力F的方向与mg的夹角为锐角时,力F的最大值可以为无穷大,故A、B、D正确。
自主建构 教材链接
教材第68页“问题”提示:等效替代关系
课时作业
学考基础练
知识点一 合力与分力的关系
1.两个共点力F1、F2的夹角为θ,它们的合力为F,下面有关说法正确的是( A )
A.若F1和F2大小不变,θ角越大,合力就越小
B.若F1、F2大小分别为4 N、7 N,它们合力可以为12 N
C.若θ保持不变,当F1、F2同时增大时F一定增大
D.质点除了受F1、F2作用,还受到F的作用
解析:若F1和F2大小不变,θ角越大,合力F越小,选项A正确;F1、F2大小分别为4 N、7 N,它们合力最大为11 N,选项B错误;当θ为180°时,F1、F2同时增大时F不一定增大,选项C错误;由于两力的合力与其两个力效果等效,合力并不是物体受到的力,选项D错误。
2.一个体操运动员在水平地面上做倒立动作,下列哪个图中沿每支手臂向下的力最大( D )
解析:将重力沿两胳膊的方向分解,合力一定时夹角越大分力越大,夹角越小时分力越小,故选项D正确。
知识点二 力的合成
3.大小分别为30 N和25 N的两个力同时作用在同一物体上,则这两个力的合力大小不可能等于( D )
A.5 N B.10 N C.45 N D.60 N
解析:两力合成时,合力满足关系式|F1-F2|≤F≤F1+F2,所以大小分别为30 N和25 N的两个力合力满足5 N≤F≤55 N,所以D不可能。
4.如图所示,在同一平面内,大小分别为1 N、2 N、3 N、4 N、5 N、6 N的六个力共同作用于一点,其合力大小为( A )
A.0 B.1 N C.2 N D.3 N
解析:先分别求1 N和4 N、2 N和5 N、3 N和6 N的合力,大小都为3 N,且三个合力互成120°角,如图所示,根据平行四边形定则知,图中三个力的合力为零,即题中所给六个力的合力为零,故A正确,B、C、D错误。
5.两个大小相等的共点力,当它们夹角为120°时,合力为F,当它们的夹角为90°时,合力大小为( B )
A.2F B.F C.F D.2F
解析:由题意知,两个大小相等的共点力F1和F2之间的夹角为120°时合力为F,如图甲,由等边三角形关系可知F1=F2=F,当这两个力之间的夹角为 90° 时合力如图乙,由勾股定理得合力大小F′=
=F,故B正确。
知识点三 力的分解
6.如图所示,将光滑斜面上的物体受到的重力mg分解为F1、F2两个力,下列结论正确的是( D )
A.F2就是物体对斜面的正压力
B.物体受FN、F1、F2三个力的作用
C.物体受mg、FN、F1、F2四个力的作用
D.F1、F2两个分力共同作用的效果跟重力mg的作用效果相同
解析:光滑斜面上的物体的重力mg按作用效果分解为平行于斜面和垂直于斜面两个方向的分力,注意两个分力不是物体所受到的力,两分力共同作用效果与重力作用效果相同,故D正确;F2是重力的一个分力,不是物体对斜面的压力,故A错误;物体受重力和支持力两个力的作用,故B、C错误。
7.将如图所示的力F分解为F1和F2两个分力,已知F、F1的大小和F2、F之间的夹角α(α<90°)。则下列说法正确的是( B )
A.若F1>Fsin α,则F2一定有两解
B.若F1=Fsin α,则F2有唯一解
C.若F1D.若F1>F,则F2一定无解
解析:画出力的矢量图如图所示,可知当F1>Fsin α时,F2可以有两解,又分析可知,当F1>F时,F2只有一解,A、D错误;当F1=Fsin α时,两分力和合力恰好构成矢量直角三角形,F2有唯一解,B正确;F18.如图所示,重为G的物体放在倾角为α的光滑斜面上,分别被垂直斜面的挡板(如图甲)和竖直放置的挡板(如图乙)挡住。根据力的作用效果,试对两个图中物体的重力进行分解,作出示意图,并求出两分力的大小。
解析:分解示意图如图所示,图甲中两分力大小分别为G1=Gsin α,
G2=Gcos α,图乙中两分力大小分别为G1′=Gtan α,G2′=。
答案:见解析
知识点四 矢量和标量
9.以下物理量属于矢量的是( A )
A.瞬时速度 B.路程
C.时刻 D.瞬时速率
解析:瞬时速度既有大小又有方向,是矢量,时刻是标量,瞬时速率和路程只有大小没有方向,是标量,故A正确。
10.如图所示,大小分别为F1、F2、F3的三个力恰好围成一个闭合的三角形,且三个力的大小关系是F1解析:根据平行四边形定则可知,A项中三个力的合力为2F1,B项中三个力的合力为0,C项中三个力的合力为2F3,D项中三个力的合力为2F2,由于三个力的大小关系是F1选考提升练
11.如图所示,A、B为同一水平线上的两个绕绳装置,转动A、B改变绳的长度,使光滑挂钩下的重物C缓慢下降。关于此过程绳上拉力大小的变化,下列说法中正确的是( B )
A.不变 B.逐渐减小
C.逐渐增大 D.不能确定
解析:当改变绳的长度,使光滑挂钩下的重物C缓慢下降时,两绳间的夹角会逐渐变小,而它们的合力与C的重力满足二力平衡而保持不变,故这两个分力逐渐减小,选项B正确。
12.有三个力同时作用在质点P上,它们的大小和方向相当于正六边形两条边和一条对角线,如图所示,这三个力中最小的力的大小为F,则这三个力的合力等于( D )
A.6F B.5F C.4F D.3F
解析:多个力合成时可以先合成任意两个力,再把这两个力的合力与第三个力合成,直到把所有的力都合成进去,即可求得最后的合力。由题图可知,F1、F2夹角为
120°,大小均为F,根据平行四边形定则,二力合力大小为F3=F,方向与F3一致,故F1、F2、F3的合力大小为3F,故D正确。
13.(多选)如图所示是骨折病人的牵引装置示意图,绳的一端固定,绕过定滑轮和动滑轮后挂着一个重物,与动滑轮相连的帆布带拉着病人的脚,整个装置在同一竖直平面内。为了使脚所受的拉力增大,可采取的方法是( BC )
A.只增加绳的长度
B.只增加重物的质量
C.只将病人的脚向左移动
D.只将两定滑轮的间距变大
解析:脚受的拉力等于两侧绳拉力的合力,只增加绳的长度,绳的拉力和θ角均不变,所以脚受到的拉力不变,选项A错误;只增加重物的质量,绳的拉力增大,所以合力增大,选项B正确;只将病人的脚向左移动,θ角减小,合力将增大,选项C正确;只将两定滑轮间距变大,θ角变大,合力将减小,选项D错误。
14.如图所示,表面光滑、质量不计的尖劈插在缝A、B之间,在尖劈背上加一压力F,则尖劈对A侧压力和B侧压力为多大
解析:将力F沿垂直劈两侧面分解,如图所示。
则tan α=,sin α=
所以F1=,F2=。
答案: 5 共点力的平衡
[课标引领]
学业质量水平要求
合格性考试 1.形成初步的平衡状态的概念,解决简单的实际问题。 2.通过对简单的平衡问题分析推理的过程,获得一定的结论。 3.形成与共点力的平衡相关的初步的相互作用观念
选择性考试 1.会运用共点力的平衡概念解决实际问题。 2.掌握正交分解法在求合力、解决平衡问题中的应用。 3.通过三角函数、几何关系等对力与平衡问题的分析和推理过程,能从不同角度解决力与平衡问题
共点力平衡条件
如图所示,著名景点——黄山飞来石,独自静止于悬崖之上,它受哪些力作用 这些力大小、方向有何关系 它们的合力有何特点
答案:受重力和支持力。重力方向竖直向下、支持力方向竖直向上,二力等大、反向,合力为零。
1.平衡状态:物体受到几个力的作用时,保持静止或匀速直线运动状态。
2.二力平衡条件:作用在同一物体上的两个力,如果大小相等,方向相反,并且在同一条直线上,那么这两个力平衡。
3.平衡条件:在共点力作用下物体平衡的条件是合力为0。
1.判断
(1)处于平衡状态的物体一定处于静止状态。( × )
(2)物体处于平衡状态时任意方向的合力均为零。( √ )
(3)某时刻物体的速度为零时,物体一定处于平衡状态。( × )
2.
如图所示,有一盏质量为m的孔明灯升空后向着东北偏上方向沿直线匀速上升,则此时孔明灯处于平衡状态吗 你能求出此时孔明灯所受空气作用力的大小和方向吗
答案:孔明灯升空后向着东北偏上方向做匀速直线运动,合力为零,处于平衡状态;只受重力和空气作用力,根据平衡条件得空气作用力大小为mg,方向竖直向上。
探究点一 力的正交分解法及其应用
如图所示,人拉物块向前匀速运动,请思考:
(1)物块受几个力 能根据平行四边形定则求这几个力的合力吗
答案:物块受到重力、支持力、摩擦力以及拉力四个力的作用。用平行四边形定则能求这几个力的合力,但需进行较繁琐的计算。
(2)若建立沿竖直和水平方向的直角坐标系,将拉力F分解为沿y轴和x轴的两个分力,再求物块所受力的合力,你认为怎样
答案:可避免繁琐的计算,使问题方便地解决。
1.正交分解法:将一个力(或其他矢量)沿相互垂直的方向分解的方法。
2.正交分解的优点:当物体受到多个力作用,并且这几个力只共面不共线时,其合力用平行四边形定则求解很繁琐,甚至难以得到结果。为此先将各力正交分解,然后再合成。
3.正交分解法求合力的步骤
[例1]
如图所示,重为500 N的人通过绕过定滑轮的轻绳牵引重力为 200 N 的物体,当绳与水平面成60°角时,物体静止。不计滑轮与绳的摩擦,求地面对人的支持力和摩擦力。
解析:人与物体静止,所受合力皆为零,对物体受力分析得,绳的拉力F=200 N,建立坐标系,对人受力分析如图,人受四个力的作用,重力G、拉力F,支持力FN、摩擦力Ff,可将绳的拉力F正交分解,如图。根据平衡条件可得
水平方向摩擦力
Ff=Fx=Fcos 60°=200× N=100 N,
竖直方向支持力
FN=G-Fsin 60°=(500-200×)N=100(5-) N。
答案:100(5-) N 100 N
坐标轴的选取原则与正交分解法的适用情况
(1)坐标轴的选取原则:坐标轴的选取是任意的,为使问题简化,建立坐标系时坐标轴的选取一般有以下两个原则:
①使尽量多的力处在坐标轴上;
②尽量使待分解的力与坐标轴间夹角为特殊值。
(2)正交分解法的适用情况:适用于计算物体受三个或三个以上共点力的情况。
[针对训练1] 智能手机的普及使“低头族”应运而生。低头时,颈椎受到的压力会增大(当人体直立时,颈椎所承受的压力等于头部的重力)。现将人体头颈部简化为如图所示的模型:重心在头部的P点,在可绕O转动的颈椎OP(轻杆)的支持力和沿PQ方向肌肉拉力的作用下处于静止。当低头时,若颈椎与竖直方向的夹角为45°,PQ与竖直方向的夹角为53°,此时颈椎受到的压力与直立时颈椎受到的压力的比值为(sin 53°=0.8,cos 53°=0.6)( D )
A.4 B.5 C.5 D.4
解析:
设颈椎对头部的支持力为FN,肌肉拉力为F,对头部进行受力分析,如图所示,以O点为原点建立坐标系,在水平方向,有FNsin 45°=Fsin 53°,在竖直方向,有FNcos 45°=mg+Fcos 53°,联立解得FN=4mg,即颈椎受到的压力也为4mg,而直立时颈椎受到压力为mg,所以此时颈椎受到的压力与直立时颈椎受到的压力的比值为4,故A、B、C错误,D正确。
探究点二 共点力的平衡条件的理解
(1)从物理学角度来看,图中各物体是否处于平衡状态
答案:图(甲)、(乙)中的物体是处于平衡状态。图(丙)中的物体不是处于平衡状态。
(2)处于平衡状态的物体,有何运动学特征
答案:物体保持静止或匀速直线运动状态。
1.“静止”和“v=0”的区别与联系
v=0
总之,平衡状态是指a=0的状态。
2.由平衡条件得出的三个结论
[例2]
如图所示一架飞机正在沿一直线匀速爬升,飞机除了受到重力以外还受到来自喷射气体的推力、空气阻力、升力等力的作用,请分析除去重力以外的其他力的合力的方向( D )
A.沿飞机的速度方向
B.垂直机身方向向上
C.沿飞机速度的反方向
D.竖直向上
解析:由题可知飞机做匀速直线运动,处于平衡状态,合力为零,则根据平衡条件可以知道,除去重力以外的其他力的合力的大小与重力的大小相等,但是方向与重力的方向相反,即竖直向上,故选项D正确,A、B、C错误。
判断物体是否处于平衡状态,一要看物体是否处于静止或匀速直线运动状态;二要看物体所受的合力是否为零,或者看物体运动状态是否变化,若运动状态改变,即物体加速度不是零,物体就不处于平衡状态。
[针对训练2] 质量为m的木块沿倾角为θ的斜面匀速下滑,如图所示,那么木块对斜面的作用力方向是( D )
A.沿斜面向上 B.垂直于斜面向上
C.沿斜面向下 D.竖直向下
解析:木块做匀速直线运动,处于平衡状态,由平衡条件可知其所受合力为零,故斜面对木块的作用力与木块所受重力等大反向,作用力方向竖直向上,由牛顿第三定律可知,木块对斜面的作用力方向竖直向下,D正确。
探究点三 静态平衡问题的处理方法
某幼儿园要在空地上做一个滑梯,根据空地的大小,滑梯的水平跨度确定为6 m。设计时,滑板和儿童裤料之间的动摩擦因数取0.4,为使儿童在滑梯游戏时能在滑板上滑下,滑梯至少要多高
答案:
设滑梯的倾角为θ,重力在滑梯上分解为两个方向的力,垂直于滑梯的力等于mgcos θ,平行于滑梯的力等于mgsin θ;人在滑梯上能滑下,满足mgsin θ≥Ff,且Ff=μFN,根据平衡条件有mgcos θ-FN=0,联立解得tan θ≥μ,根据几何关系有tan θ=,解得h≥μb=2.4 m。
方法 内容
合成法 物体受三个共点力的作用而平衡,则任意两个力的合力一定与第三个力大小相等,方向相反
效果 分解法 物体受三个共点力的作用而平衡,将某一个力按力的效果分解,则其分力和其他两个力满足平衡条件
正交 分解法 物体受到三个或三个以上力的作用而平衡,将物体所受的力分解为相互垂直的两组,每组力都满足平衡条件,即Fx合=0,Fy合=0
[例3]
沿光滑的墙壁用网兜把一个足球挂在A点(如图),足球的质量为m,网兜的质量不计,足球与墙壁的接触点为B,悬绳与墙壁的夹角为α,求悬绳对球的拉力和墙壁对球的支持力。
解析:法一 合成法
取足球作为研究对象,它受重力G=mg、墙壁的支持力F1和悬绳的拉力F2三个共点力作用而平衡,由共点力平衡的条件可知,F1和F2的合力F与G大小相等、方向相反,即F=G,从图中力的平行四边形可求得
F1=Ftan α=mgtan α,
F2==。
法二 分解法
取足球作为研究对象,其受重力G、墙壁支持力F1、悬绳的拉力F2,如图所示。将重力G分解为F1′和F2′,由共点力平衡条件可知,F1与F1′的合力必为零,F2与F2′的合力也必为零,所以F1=F1′=mgtan α,
F2=F2′=。
法三 相似三角形法
取足球作为研究对象,其受重力G、墙壁的支持力F1、悬绳的拉力F2,如图所示,设球心为O,由共点力的平衡条件可知,F1和G的合力F与F2大小相等、方向相反,由图可知,三角形OFG与三角形AOB相似,所以==,
F2==,
==tan α,
F1=Gtan α=mgtan α。
法四 正交分解法
取足球作为研究对象,其受重力G、墙壁的支持力F1、悬绳拉力F2,如图所示,取水平方向为x轴,竖直方向为y轴,将F2分别沿x轴和y轴方向进行分解。由平衡条件可知,在x轴和y轴方向上的合力Fx合和Fy合应分别等于零。即
Fx合=F1-F2sin α=0,
Fy合=F2cos α-G=0,
联立解得F1=mgtan α,F2=。
答案: mgtan α
应用共点力平衡条件解题的步骤
(1)明确研究对象(物体、质点或绳的结点等)。
(2)分析判定研究对象是否处于平衡状态。
(3)对研究对象进行受力分析,并画出受力示意图。
(4)列平衡方程(灵活运用力的合成法、效果分解法、正交分解法、矢量三角形法及数学解析法)。
(5)求解或讨论(解的结果及物理意义)。
[针对训练3]如图所示,一物块置于水平地面上。当用与水平方向成60°角的力F1拉物块时,物块做匀速直线运动;当改用与水平方向成30°角的力F2推物块时,物块仍做匀速直线运动。若F1和F2的大小相等,则物块与地面之间的动摩擦因数为( B )
A.-1 B.2-
C.- D.1-
解析:对两种情况下的物块分别受力分析,如图所示。
将F1正交分解为F3和F4,F2正交分解为F5和F6,根据平衡条件有F滑=F3,mg=F4+FN;F滑′=F5,mg+F6=FN′,而F滑=μFN,F滑′=μFN′,则有F1cos 60°=μ(mg-F1sin 60°),F2cos 30°=μ(mg+F2sin 30°),又根据题意F1=F2,联立解得μ=2-,故选B。
自主建构 教材链接
教材第72页“问题”提示:根据物体的受力特点,可将图甲、图丁分为一类、图乙、图丙分为另一类。图甲、图丁中木棒受到的力或力的作用线相交于一点,图乙、图丙中的木棒受到的力的作用线不会相交,属于非共点力平衡
课时作业
学考基础练
知识点一 平衡状态、平衡条件、受力分析
1.物体在共点力作用下,下列说法正确的是( C )
A.物体的速度在某一时刻等于零时,物体就一定处于平衡状态
B.物体相对另一物体保持静止时,物体一定处于平衡状态
C.物体所受合力为零时,就一定处于平衡状态
D.物体做匀加速运动时,物体处于平衡状态
解析:处于平衡状态的物体从运动形式上是处于静止或匀速直线运动状态;从受力上看,物体所受合力为零,选项C正确;某一时刻速度为零的物体,受力不一定为零,故不一定处于平衡状态,选项A错误;物体相对另一物体静止时,该物体不一定静止,如当另一物体做变速运动时,该物体也做变速运动,此时物体处于非平衡状态,选项B错误;物体做匀加速运动,所受合力不为零,所以不是平衡状态,选项D错误。
2.如图所示,一物体在粗糙水平地面上受斜向上的恒定拉力F作用而处于静止状态,则下列说法正确的是( C )
A.物体可能只受两个力的作用
B.物体可能受三个力的作用
C.物体一定受四个力的作用
D.物体可能不受摩擦力作用
解析:物体一定受重力,拉力F产生两个作用效果,水平向右拉木块,竖直向上拉木块,由于木块处于静止状态,受力平衡,水平方向必有摩擦力与拉力的水平分量平衡,即一定有摩擦力,结合摩擦力的产生条件可知必有支持力,因而物体一定受四个力的作用,故A、B、D错误,C正确。
3.同一物体在下列几组共点力作用下可能处于静止状态的是( A )
A.3 N、4 N、5 N B.3 N、5 N、9 N
C.4 N、6 N、11 N D.5 N、6 N、12 N
解析:3 N、4 N的合力范围是1~7 N,5 N在其合力范围内,三个力的合力可能为零,则物体可能处于静止状态,故A正确;3 N、5 N的合力范围是2~8 N,9 N不在其合力范围内,则物体不可能处于静止状态,故B错误;4 N、6 N 的合力范围是2~10 N,11 N不在其合力范围内,则物体不可能处于静止状态,故C错误;5 N、6 N的合力范围是1~
11 N,12 N不在其合力范围内,则物体不可能处于静止状态,故D错误。
4.高杆船技是乌镇的传统民间杂技艺术,表演者爬上固定在船上的竹竿,模拟蚕宝宝吐丝作茧的动作祈愿蚕茧丰收。如图所示,此时表演者静止在弯曲倾斜的竹竿上,则下列说法正确的是( B )
A.表演者对竹竿的弹力是由竹竿形变产生的
B.表演者的合力一定为零
C.表演者对竹竿的摩擦力一定为零
D.竹竿对表演者的力竖直向下
解析:表演者对竹竿的弹力是由表演者形变产生的,选项A错误;因竹竿弯曲倾斜,所以表演者一定受到摩擦力的作用,由牛顿第三定律可知,表演者对竹竿的摩擦力不为零,选项C错误;因表演者处于平衡状态,可知竹竿对表演者的作用力竖直向上,表演者的合力一定为零,选项B正确,D错误。
知识点二 静态平衡问题、力的正交分解
5.如图所示,一名登山运动员攀登陡峭的雪壁,峭壁是竖直的面,冰面光滑,腿与峭壁面垂直,轻绳与壁面的夹角为30°,运动员质量为
60 kg,g取10 m/s2。人处于静止状态,则细绳给人的拉力为( B )
A.200 N B.400 N
C.600 N D.1 200 N
解析:对运动员受力分析如图所示,根据平衡条件可知,轻绳给运动员的张力FT==400 N,故B正确,A、C、D错误。
6.(多选)如图所示,在大小为F的水平向左的恒力作用下,重为G的物体A静止在倾角为α的光滑斜面上。下列关于斜面对物体A的支持力的表达式正确的是( AB )
A.FN= B.FN=
C.FN=Gsin α+Fcos α D.FN=
解析:对物体A受力分析,如图甲所示。根据共点力平衡条件,推力和重力的合力与支持力等大、反向、共线,结合几何关系,有F=
Gtan α,FN=,FN=,FN=。
将推力和重力沿斜面和垂直于斜面方向正交分解,如图乙所示。根据共点力平衡条件,有Gsin α=Fcos α,FN=Fsin α+Gcos α,故A、B正确。
7.如图所示,用一根绳子a把物体挂起来,再用另一根水平的绳子b把物体拉向一旁固定起来。物体的重力是40 N,绳子a与竖直方向的夹角θ=37°,绳子a与b对物体的拉力分别是多大 (sin 37°=0.6,
cos 37°=0.8)
解析:以物体为研究对象,进行受力分析,以水平方向为x轴,竖直方向为y轴建立直角坐标系,如图所示。
由共点力的平衡条件得
FTb-FTasin 37°=0
FTacos 37°-G=0
联立解得FTa===50 N
FTb=FTasin 37°=50×0.6 N=30 N。
答案:50 N 30 N
8.如图所示,光滑金属球的重力G=40 N。它的左侧紧靠竖直的墙壁,右侧置于倾角 θ=37° 的斜面体上,已知斜面体处于水平地面上保持静止状态,sin 37°=0.6,cos 37°=0.8。求:
(1)墙壁对金属球的弹力大小;
(2)水平地面对斜面体的摩擦力的大小和方向。
解析: (1)金属球静止,其受力如图所示。由平衡条件可得墙壁对金属球的弹力FN1=Gtan θ=Gtan 37°=40× N=30 N。
(2)斜面体对金属球的弹力FN2===50 N,
由牛顿第三定律可知金属球对斜面体的作用力为50 N,方向与水平面成53°角。对斜面体,由平衡条件得FN2′cos 53°-Ff=0,
即Ff=FN2′cos 53°=50 N×0.6=30 N,方向水平向左。
答案:(1)30 N (2)30 N 水平向左
选考提升练
9.蹦床可简化为如图所示,完全相同的网绳构成正方形,O、a、b、c等为网绳的结点。当网水平张紧时,若质量为m的运动员从高处竖直落下,并恰好落在O点,当该处下凹至最低点时,网绳aOe、cOg均成120°向上的张角,此时O点受到的向下的作用力为F,则这时O点周围每根网绳的拉力的大小为( B )
A. B.
C. D.
解析:因为网绳完全相同,并且构成的是正方形,O点到最低时aOe,
cOg所成的角度是120°,所以Fa=Fe=Fc=Fg,且Fa与Fe的合力为F=Fa,同理Fg与Fc的合力也是F=Fg,选项A、C、D错误,B正确。
10.如图所示,一只半球形碗倒扣在水平桌面上处于静止状态,球的半径为R,质量为m的蚂蚁只有在离桌面的高度大于或等于R时,才能停在碗上。若最大静摩擦力等于滑动摩擦力,那么蚂蚁和碗面间的动摩擦因数为( C )
A. B.
C. D.
解析:蚂蚁在离桌面高度等于R时,蚂蚁受重力、支持力和摩擦力处于平衡状态,根据平衡条件有Ff=mgsin θ,FN=mgcos θ,而cos θ==,所以μ==tan θ=,故C正确,A、B、D错误。
11.(多选)如图所示,吊车用两根等长的绳子OA和OB将质量分布均匀的铁板匀速吊离地面。下列说法中正确的是( ACD )
A.绳越长,每根绳对铁板拉力越小
B.绳越长,两根绳对铁板拉力的合力越小
C.两根绳子对铁板拉力的合力竖直向上
D.两根绳子对铁板的拉力和铁板的重力是共点力
解析:对铁板受力分析,如图所示。且绳的拉力沿绳方向,设∠AOB=θ,由于铁板被匀速吊起,因此根据共点力平衡条件,铁板所受两根绳的拉力的合力一直与重力等大反向,选项B错误,D正确;根据平衡条件,两根绳子拉力的合力与铁板的重力等大反向,选项C正确;根据平衡条件,在竖直方向有2FTcos =mg,当绳变长时,θ变小,因此FT变小,选项A正确。
12.如图所示,两个可视为质点的小球A、B通过固定在O点的光滑滑轮用轻绳相连,小球A置于光滑半圆柱上,小球B用水平轻绳拉着,水平轻绳另一端系于竖直板上,两球均处于静止状态。已知O点在半圆柱横截面圆心O1的正上方,OA与竖直方向成30°角、其长度与半圆柱横截面的半径相等,OB与竖直方向成60°角,则( D )
A.轻绳对球A的拉力与球A所受弹力的合力大小相等
B.轻绳对球A的拉力与半圆柱对球A的弹力大小不相等
C.轻绳对球A的拉力与对球B的拉力大小之比为∶
D.球A与球B的质量之比为2∶1
解析:设轻绳中拉力为FT,半圆柱对球A的弹力为FN,对球A受力分析如图所示。球A所受弹力为绳对球A的拉力和半圆柱对球A的弹力的合力,与重力等大反向,大于FT,故A错误;对球A,根据平衡条件有FTsin 30°=FNsin 30°,FTcos 30°+FNcos 30°=mAg,解得FT=FN=mAg,故B错误;轻绳对球A的拉力与对球B的拉力都等于FT,故C错误;对球B有FTcos 60°=mBg,FT=2mBg,解得=,故D正确。
13.一质量m=3 kg的物体放在长木板上,当木板一端抬起与水平方向夹角为θ=30°时物体恰好匀速下滑,当木板水平放置时用多大的水平力才能拉动该物体 (最大静摩擦力等于滑动摩擦力,g取10 m/s2)
解析:对物体受力分析如图所示。
物体匀速下滑,根据平衡条件有
mgsin θ=μmgcos θ,
解得μ=tan θ=,
当物体水平放置时,设物体所受水平拉力为F,摩擦力为Ff′,根据平衡条件有
FN′=mg,
则F=Ff′=μFN′=μmg,
联立得F=10 N。
答案:10 N
14.滑板运动是一项非常刺激的水上运动。研究表明,在进行滑板运动时,水对滑板的作用力FN垂直于板面,大小为kv2,其中v为滑板速率(水可视为静止)。某次运动中,在水平牵引力作用下,当滑板和水面的夹角θ=37° 时(如图),滑板做匀速直线运动,相应的k=54 kg/m,人和滑板的总质量为108 kg, 试求:(重力加速度g取10 m/s2,
sin 37°=0.6,cos 37°=0.8,忽略空气阻力)
(1)水平牵引力的大小;
(2)滑板的速率。
解析:(1)以滑板和运动员为研究对象,其受力如图所示。
由共点力平衡条件可得
FNcos θ=mg,
FNsin θ=F,
联立解得F=810 N。
(2)FN=,
且FN=kv2,
联立得v==5 m/s。
答案:(1)810 N (2)5 m/s实验 探究弹簧弹力与形变量的关系
一、数据处理
1.列表法:将测得的F、x的实验数据填入设计好的表格中,可以发现弹力F与弹簧形变量x的比值在误差允许范围内是相等的。
2.图像法:以弹簧形变量x为横坐标,弹力F为纵坐标,描出F、x各组数据相应的点,过这些点作出F-x图像,为一条过坐标原点的直线,图线斜率表示弹簧的劲度系数。
3.函数法:弹力F与弹簧形变量x满足F=kx的关系,将所测某组数据代入,可得到F与x的函数关系,其比例系数k为弹簧的劲度系数。
二、误差分析
产生原因 减小方法
偶然 误差 读数、作 图误差 (1)多次测量。 (2)所挂钩码的质量差适当大些
系统 误差 弹簧自身 重力的影响 选轻弹簧或悬挂后测量不挂钩码时弹簧长度
三、注意事项
1.竖直:要保持刻度尺竖直并靠近弹簧。
2.适当:弹簧下端挂的钩码不要太多,以免超过弹簧的弹性限度。
3.数据:尽量选用轻质弹簧以减小弹簧自身重力带来的影响,且要尽量多测几组数据。
4.单位:记录数据时要注意弹力及弹簧形变量的对应关系及单位。
5.作图:先描点,然后将这些点拟合成一条直线,不要画折线。
类型一 实验原理与探究过程
[例1] 如图所示,用铁架台、弹簧和多个已知质量且质量相等的钩码探究在弹性限度内弹簧弹力与弹簧伸长量的关系。
(1)为完成实验,还需要的实验器材有    。
(2)实验中需要测量的物理量有  。
(3)为完成该实验,设计实验步骤如下:
A.将铁架台固定于桌子上,并将弹簧的一端系于横梁上,在弹簧附近竖直固定一把刻度尺;
B.以弹簧伸长量为横坐标,以弹力为纵坐标,描出各组(x,F)对应的点,并用平滑的曲线连接起来;
C.记下弹簧不挂钩码时其下端在刻度尺上的刻度l0;
D.以弹簧伸长量为自变量,写出弹力与伸长量的关系式,首先尝试写成一次函数,如果不行,则考虑二次函数;
E.依次在弹簧下端挂上1个、2个、3个、4个……钩码,并分别记下钩码静止时弹簧下端所对应的刻度,并记录在表格内,然后取下钩码;
F.解释函数表达式中常数的物理意义;
G.整理仪器。
请将以上步骤按操作的先后顺序排列出来:A   FG。
解析:(1)实验过程中需要测量弹簧的长度或伸长量,因此实验器材还需要有刻度尺。
(2)为了测量弹簧的伸长量,实验中应测量弹簧原长、弹簧挂不同个数的钩码时所对应的长度。
(3)根据完成实验的合理性可知先后顺序为ACEBDFG。
答案:(1)刻度尺 (2)弹簧原长、弹簧挂不同个数的钩码时所对应的长度 (3)CEBD
类型二 数据处理与误差分析
[例2] 某同学用图甲所示的方案探究在弹性限度内弹簧弹力与弹簧伸长量的关系。
(1)作出弹簧弹力F与弹簧伸长量x的F-x图线后,发现图线不过原点。你认为造成这种结果的原因是               。
(2)该同学找到原因后,进行了改进,采用图乙所示的方案,选择较光滑的水平桌面,滑轮涂上润滑油。实验数据记录如表所示(一个钩码10 g):
钩码数量/个 0 1 2 3 4 5 6
弹簧长度 /cm 25.35 27.35 29.36 31.35 33.35 35.34 37.35
弹簧形 变量/cm 0 2.00 4.01 6.00 8.00 9.99 12.00
请根据表中数据完成作图,纵轴是钩码重力,横轴是弹簧伸长量。(重力加速度g取10 m/s2)
(3)由图可知弹簧的劲度系数为    N/m(结果保留两位有效数字)。
解析:(1)由于弹簧受自身重力的影响,使得在外力为零的情况下弹簧有了一定的伸长量,导致图像不过原点。
(2)根据数据描点连线得图像如图所示。
(3)根据图中的斜率可求得k==5.0 N/m。
答案:(1)受弹簧自身重力的影响 (2)图见解析
(3)5.0
类型三 方案拓展与实验创新
[例3] 在“探究弹簧弹力与形变量的关系,并测定弹簧的劲度系数”的实验中,实验装置如图甲所示。所用的每个钩码的重力相当于对弹簧提供了向右的恒定拉力。实验时先测出不挂钩码时弹簧的自然长度,再将5个钩码逐个挂在绳子的下端,每次测出相应的弹簧总长度。
(1)有一个同学把通过以上实验测量得到的6组数据描点在图乙坐标系中,请作出F-L图线。
(2)由此图线可得出该弹簧的原长L0=     cm,劲度系数k=    N/m。
(3)该同学实验时把弹簧水平放置,与弹簧悬挂放置相比较,优点在于:  ,
缺点在于:  。
解析:(1)F-L图线如图所示。
(2)弹簧的原长L0即弹簧弹力为零时弹簧的长度,由题图可知,
L0=5×10-2 m=5 cm。劲度系数为图像直线部分的斜率,k=20 N/m。
(3)优点:可以避免弹簧自身重力对实验的影响。缺点:弹簧与桌面及绳子与滑轮间存在的摩擦会造成实验误差。
答案:(1)图见解析 (2)5 20 (3)见解析
课时作业
1.探究弹力和弹簧伸长的关系时,作出弹力F与弹簧总长度L的关系图线如图所示。则( D )
A.该弹簧的原长为10 m
B.该弹簧的劲度系数为0.25 N/m
C.在该弹簧下端悬挂1.0 N的重物时,弹簧的长度为18 cm
D.在该弹簧下端悬挂2.0 N的重物时,弹簧的形变量为10 cm
解析:图线与坐标轴交点的横坐标表示弹簧的原长,故弹簧原长L0=
10 cm,A错误;图线斜率为弹簧的劲度系数,所以k==0.2 N/cm=
20 N/m,B错误;根据图线可知,在该弹簧下端悬挂1.0 N的重物时,弹簧的长度为15 cm,C错误;由图像可知,在该弹簧下端悬挂2.0 N的重物时,弹簧的总长度为20 cm,故弹簧形变量Δx=20 cm-10 cm=10 cm,D正确。
2.为了探究弹力F与弹簧伸长量x的关系,李强同学选了甲、乙两根规格不同的弹簧进行测试,根据测得的数据绘出如图所示的图像,从图像上看,该同学没能完全按实验要求做,使图像上端成为曲线,图像上端成为曲线是因为       。甲、乙两根弹簧的劲度系数分别为    N/m、    N/m。若要制作一个精确度较高的弹簧测力计,应选弹簧  (选填“甲”或“乙”)。
解析:根据胡克定律,在弹性限度内,弹簧的弹力与形变量成正比,故Fx图线是直线,向上弯曲的原因是超出了弹簧的弹性限度;注意该图像中纵坐标为伸长量,横坐标为拉力,斜率的倒数为劲度系数,由此可求出k甲=66.7 N/m,k乙=200 N/m;由于甲的劲度系数小,因此其精确
度高。
答案:超过了弹簧的弹性限度 66.7 200 甲
3.(1)实验小组在“探究弹力和弹簧伸长的关系”的实验中,使用两条不同的轻质弹簧a和b,得到弹力与弹簧长度的图像如图甲所示。下列说法正确的是    。
A.a的原长比b的长
B.a的劲度系数比b的大
C.a的劲度系数比b的小
D.测得的弹力与弹簧的长度成正比
(2)另一实验小组在同一实验的研究性学习中,利用所学的知识解决了如下问题:一轻质弹簧竖直悬挂于某一深度为h=35.0 cm,且开口向下的小筒中(没有外力作用时弹簧的下端位于筒内,用测力计可以同弹簧的下端接触),如图乙所示。若本实验的长度测量工具只能测量露出筒外弹簧的长度l,现要测出弹簧的原长l0和弹簧的劲度系数,该同学通过改变l而测出对应的弹力F,作出Fl图像如图丙所示,则弹簧的劲度系数为k=    N/m,弹簧的原长l0=    cm。
解析:(1)在图像中横截距表示弹簧的原长,故a的原长比b的短,故A错误;在图像中斜率表示弹簧的劲度系数k,故a的劲度系数比b的大,故B正确,C错误;弹簧的弹力满足胡克定律,弹力与弹簧的形变量成正比,故D错误。
(2)根据胡克定律F与l的关系式为F=k(l+h-l0)=kl+k(h-l0),从图像中可得直线的斜率为k=200 N/m,截距为20 N,故k(h-l0)=20 N,解得l0=25 cm。
答案:(1)B (2)200 25
4.一位同学做“探究弹力大小与弹簧伸长量之间的关系”实验所测的几组数据如表所示,请你根据表中数据做好分析。
弹力F/N 0.50 1.00 1.50 2.00
弹簧原来 长度L0/cm 15.00 15.00 15.00 15.00
弹簧后来 长度L/cm 16.00 17.10 17.90 19.00
弹簧伸长 量x/cm                
(1)计算出每一次弹簧的伸长量,并将结果填在数据表的空格内。
(2)坐标图上作出Fx图线。
(3)该同学通过上述实验探究的结论应该是
 。
解析:(1)根据表中数据可得,弹簧的伸长量分别为1.00 cm、2.10 cm、2.90 cm、4.00 cm。
(2)根据表中数据作出Fx图线如图所示。
(3)该同学通过上述实验探究的结论是:在弹性限度内(或在一定范围内),弹簧弹力的大小与弹簧的伸长量成正比。
答案:(1)1.00 2.10 2.90 4.00 (2)图见解析
(3)在弹性限度内(或在一定范围内),弹簧弹力的大小与弹簧的伸长量成正比
5.做“探究弹力与弹簧伸长量的关系”实验。
(1)关于测量弹簧原长的操作步骤先后顺序,下列说法正确的是
    。
A.先测量弹簧的原长,后竖直悬挂
B.先竖直悬挂,后测量弹簧的原长
C.先后顺序对实验结果无影响
D.先后顺序对实验结果的影响程度取决于弹簧的自重
(2)某同学利用如图甲所示的装置测量某一弹簧的劲度系数,将该弹簧竖直悬挂起来,在自由端挂上砝码盘。通过改变盘中砝码的质量,测得6组砝码的质量m和对应的弹簧长度L,画出mL图线,如图乙所示。(重力加速度g取10 m/s2)
①采用恰当的数据处理,该弹簧的劲度系数为   N/m。(保留三位有效数字)
②请你判断该同学得到的实验结果与考虑砝码盘的质量相比,结果
    (选填“偏大”“偏小”或“相同”)。
解析:(1)在“探究弹力和弹簧伸长量的关系”实验中,由于弹簧的自重,水平放置和竖直悬挂,弹簧的长度不同,所以先竖直悬挂,后测量原长,这样挂上砝码后测出弹簧伸长后的长度减去原长能准确反映伸长量,故A错误,B正确;先后顺序对实验结果的影响程度取决于弹簧的自重,故C错误,D正确。
(2)①由胡克定律F=kx结合mL图线的斜率得k===g·k斜=
10 m/s2×≈3.44 N/m。
②劲度系数是根据图线斜率计算出的,即k劲=,是否考虑砝码盘的质量对结果无影响。
答案:(1)BD (2)①3.44 ②相同
6.某同学利用如图所示的装置探究弹簧的弹力与伸长量的关系。他将标有坐标刻度(每个小正方形的边长为1 cm)的长木板固定在竖直平面内,同时将一水平横杆固定在长木板上,横杆与长木板的水平刻度线重合,弹簧的上端固定在横杆上,调整装置使弹簧的轴线与长木板的竖直刻度线重合。实验中他将弹簧的上端依次固定在横杆上0、5 cm、10 cm、15 cm、20 cm、25 cm刻度处,在弹簧的下端分别挂0、1、2、3、4、5个钩码,在长木板的坐标上分别记录弹簧末端的位置,如图所示。回答下列问题:
(1)以不挂钩码的弹簧末端为原点,水平向右为x轴正方向,竖直向下为y轴正方向,根据长木板上所描弹簧末端点的分布,可以用直线拟合,你得到的结论是              。
(2)以上得到的直线的斜率用k0表示,每个钩码的质量用m表示,重力加速度用g表示,则弹簧的劲度系数k=    (用k0、m、g表示)。
(3)已知m=50 g,g取9.8 m/s2,则弹簧的劲度系数k=      (结果保留两位有效数字)。
解析:(1)由题意可知,x轴表示弹力,y轴表示弹簧长度,由F=kx=
k(L-L0)可知,得到的结论是在误差允许的范围内,弹簧的弹力与弹簧的伸长量成正比。
(2)由F=kx可知,直线的斜率k0=,Δy=Δl,Δx=0.05·,ΔF=
kΔl,解得k=。
(3)由k=代入数据得k=0.49 N/ cm或k=49 N/m。
答案:(1)在误差允许的范围内,弹簧的弹力与弹簧的伸长量成正比 (2) (3)0.49 N/cm或49 N/m
7.将两根自然长度相同、劲度系数不同、粗细也不同的弹簧套在一起,看成一根新弹簧,设原粗弹簧(记为A)劲度系数为k1,原细弹簧(记为B)劲度系数为k2,套成的新弹簧(记为C)劲度系数为k3。关于k1、k2、k3的大小关系,同学们做出了如下猜想:
甲同学:和电阻并联相似,可能是=+
乙同学:和电阻串联相似,可能是k3=k1+k2
丙同学:可能是k3=
(1)为了验证猜想,同学们设计了相应的实验(装置见图甲)。
(2)简要实验步骤如下,请完成相应填空。
①将弹簧A悬挂在铁架台上,用刻度尺测量弹簧A的自然长度L0;
②在弹簧A的下端挂上钩码,记下钩码的个数n、每个钩码的质量m和当地的重力加速度大小g,并用刻度尺测量弹簧的长度L1;
③由F=   计算弹簧的弹力,由x=L1-L0计算弹簧的伸长量,由k=计算弹簧的劲度系数;
④改变钩码的个数,重复实验步骤②、③,并求出弹簧A的劲度系数的平均值k1;
⑤仅将弹簧分别换为B、C,重复上述操作步骤,求出弹簧B、C的劲度系数的平均值k2、k3,比较k1、k2、k3并得出结论。
(3)图乙是实验得到的图线,由此可以判断同学    的猜想正确。
解析:(2)根据共点力平衡可知F=nmg。
(3)由图可知k1===0.25 N/cm,k2===0.375 N/cm,
k3===0.625 N/cm,由此可知满足k3=k1+k2,故同学乙的猜想
正确。
答案:(2)③nmg (3)乙