第十三章 立体几何初步
13.2 基本图形位置关系
13.2.3 直线与平面的位置关系—直线与平面平行的判定与性质
《课程标准》指出:几何学是研究现实世界中物体的形状、大小与位置关系的数学学科.人们通常采用直观感知、操作确认、思辨论证、度量计算等方法认识和探索几何图形及其性质.三维空间是人类生存的现实空间,认识空间图形,培养和发展学生的空间想像能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力,是高中阶段数学必修系列课程的基本要求.在《立体几何初步》部分,学生将先从对空间几何体的整体观察入手,认识空间图形;再以长方体为载体,直观认识和理解空间点、线、面的位置关系;能用数学语言表述有关平行、垂直的性质与判定,并对某些结论进行论证.学生还将了解一些简单几何体的表面积与体积的计算方法.
课程目标 学科素养
1.掌握直线与平面平行的判定定理,并能初步利用定理解决问题. 2.掌握直线与平面平行的性质定理,明确由线面平行可推出线线平行. 在发现、推导和应用直线与平面平行的判定和性质的过程中,发展学生的数学抽象素养、逻辑推理素养和直观想象素养.
1.教学重点:掌握直线与平面平行的判定和性质定理.
2.教学难点:会用判定和性质定理证明相关问题.
多媒体调试、讲义分发。
门扇的竖直两边是平行的,当门扇绕着一边转动时只要门扇不被关闭,不论转动到什么位置,它能活动的竖直一边所在直线都与固定的竖直边所在平面(墙面)存在不变的位置关系.
问题 (1)上述问题中存在着不变的位置关系是指什么?
(2)若判断直线与平面平行,由上述问题你能得出一种方法吗?
提示 (1)平行.
(2)可以,只需在平面内找一条与平面外直线平行的直线即可.
知识点一 直线与平面的位置关系
位置关系 直线a在平面α内 直线a在平面α外
直线a与平面α相交 直线a与平面α平行
公共点 有无数个公共点 有且只有一个公共点 没有公共点
符号表示 a α a∩α=A a∥α
图形表示
提示:利用公共点的个数可以判断直线与平面的位置关系.
知识点二 直线与平面平行的判定定理
文字语言 如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行
符号语言 a∥α
图形语言
思考 (1)若一条直线与平面内的一条直线平行,一定有直线与平面平行吗?
答案 不一定,也有可能直线在平面内,所以一定要强调直线在平面外.
(2)如果一条直线与平面内无数条直线都平行,那么该直线和平面之间具有什么关系?
答案 平行或直线在平面内.
知识点三 直线与平面平行的性质定理
文字语言 一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行
符号语言 l∥α,l β,α∩β=m l∥m
图形语言
思考 如果一条直线和一个平面平行,那么这条直线和平面内的直线有怎样的位置关系?
答案 这条直线与平面没有公共点,所以这条直线与平面内的直线平行或异面.
一、直线与平面平行的判定定理的应用
例1 如图,在正方体ABCD-A1B1C1D1中,E,F,G分别是BC,CC1,BB1的中点,求证:EF∥平面AD1G.
证明 连接BC1(图略),
在△BCC1中,
∵E,F分别为BC,CC1的中点,∴EF∥BC1,
又∵AB∥A1B1∥D1C1,且AB=A1B1=D1C1,
∴四边形ABC1D1是平行四边形,
∴BC1∥AD1,∴EF∥AD1,又EF 平面AD1G,
AD1 平面AD1G,∴EF∥平面AD1G.
反思感悟 利用直线与平面平行的判定定理证明线面平行的关键是在平面内找一条直线与已知直线平行,常利用平行四边形、三角形中位线、基本事实4等.
跟踪训练1 如图,四边形ABCD是平行四边形,P是平面ABCD外一点,M,N分别是AB,PC的中点.求证:MN∥平面PAD.
证明 如图,取PD的中点G,连接GA,GN.
∵G,N分别是△PDC的边PD,PC的中点,
∴GN∥DC,GN=DC.
∵M为平行四边形ABCD的边AB的中点,
∴AM=DC,AM∥DC,
∴AM∥GN,AM=GN,
∴四边形AMNG为平行四边形,
∴MN∥AG.
又MN 平面PAD,AG 平面PAD,
∴MN∥平面PAD.
二、直线与平面平行的性质定理的应用
例2 如图所示,在四棱锥P-ABCD中,底面ABCD是平行四边形,AC与BD交于点O,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:AP∥GH.
证明 如图,连接MO.
∵四边形ABCD是平行四边形,
∴O是AC的中点.
又∵M是PC的中点,∴AP∥OM.
又∵AP 平面BDM,
OM 平面BDM,
∴AP∥平面BDM.
又∵AP 平面APGH,平面APGH∩平面BDM=GH,∴AP∥GH.
反思感悟 线面平行的性质定理和判定定理经常交替使用,也就是通过线线平行得到线面平行,再通过线面平行得到线线平行.
跟踪训练2 如图所示,在四面体ABCD中,用平行于棱AB,CD的平面截此四面体,求证:截面MNPQ是平行四边形.
证明 因为AB∥平面MNPQ,平面ABC∩平面MNPQ=MN,且AB 平面ABC,
所以由线面平行的性质定理,知AB∥MN.
同理AB∥PQ,所以MN∥PQ.
同理可得MQ∥NP.
所以截面MNPQ是平行四边形.
1.(多选)两条直线a,b满足a∥b,b 平面α,则a与平面α的位置关系可以是( )
A.a∥α B.a与α相交
C.a与α不相交 D.a α
答案 ACD
2.下列命题正确的是( )
A.如果一条直线不在平面内,则这条直线就与这个平面平行
B.过直线外一点,可以作无数个平面与这条直线平行
C.如果一条直线与平面平行,则它与平面内的任何直线平行
D.如果一条直线平行于平面内的无数条直线,则该直线与平面平行
答案 B
解析 不在平面内的直线还可与平面相交,故A错误;一条直线与平面平行,那么这条直线与平面内的直线平行或异面,故C错误;直线也可能在平面内,故D错误.
3.如图所示,在正方体ABCD-A′B′C′D′中,E,F分别为四边形ABCD和四边形A′B′C′D′的中心,则正方体的六个面中与EF平行的平面有( )
A.1个 B.2个
C.3个 D.4个
答案 D
解析 由题图知正方体的前、后、左、右四个面都与EF平行.
4.如图所示,在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点(不与端点重合),EH∥FG,则EH与BD的位置关系是( )
A.平行 B.相交
C.异面 D.不确定
答案 A
解析 ∵EH∥FG,EH 平面BDC,FG 平面BDC,
∴EH∥平面BDC,
又EH 平面ABD,且平面ABD∩平面BDC=BD,
∴EH∥BD.
5.如图所示,四边形ABCD是梯形,AB∥CD,且AB∥平面α,AD,BC与平面α分别交于点M,N且点M是AD的中点,AB=4,CD=6,则MN=________.
答案 5
解析 因为AB∥平面α,AB 平面ABCD,平面ABCD∩平面α=MN,
所以AB∥MN,
又点M是AD的中点,AB∥CD,
所以MN是梯形ABCD的中位线,故MN=5.
教学中,要注意联系平面图形的知识,利用类比、联想等方法,辨别平面图形和立体图形的异同,理解两者的内在联系,并逐渐地让学生感悟到,将空间问题转化为平面问题是处理立几问题的重要思想.
2 / 6