古典概型课件

文档属性

名称 古典概型课件
格式 zip
文件大小 292.4KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2014-01-15 14:17:57

图片预览

文档简介

课件21张PPT。1. 概率的基本性质有哪些?(1)、事件A的概率取值范围是(2)、如果事件A与事件B互斥,则 (3)、若事件A与事件B互为对立事件,则 P(A∪B)=P(A)+P(B)P(A)=1- P(B)0≤P(A) ≤1一.复习导入   思考:
用实验的方法来求某一随机事件的概率好不好?为什么?答:不合理,因为需要大量的试验才能得出较准确的概率,在现实生活中操作起来不方便。§3.2.1古典概型1、掷一枚质地均匀的硬币的试验,
(1)可能出现几种不同的结果? (2)哪一个面朝上的可能性较大?情境(一)一样大!概率都等于0.5情境(二) 抛掷一只均匀的骰子一次。
(1)点数朝上的试验结果是有限的还是无限的?
如果是有限的共有几种?
(2)哪一个点数朝上的可能性较大?一样大! 像上面的“正面朝上”、 “正面朝下”;出现“1点”、 “2点”、 “3点”、 “4点”、 “5点”、 “6点”这些随机事件叫做构成试验结果的基本事件。基本事件的特点:互斥几个基本事件的和。例1. 从字母a、b、c、d任意取出两个不同字母的试验中,有哪些基本事件?解:所求的基本事件共有6个:树状图分析:为了解基本事件,我们可以按照字典排序的顺序,把所有可能的结果都列出来。 我们一般用列举法列出所有
基本事件的结果,画树状图是列
举法的基本方法。
二.问题探究 总结规律【试一试】例题变式一个袋中装有红、黄、蓝、绿四个大小
形状完全相同的球,从中一次性摸出
三个球,其中有多少个基本事件?4个刚才试验的结果有哪些特点?(1)试验中所有可能出现的基本事件只有有限个。(2)每个基本事件出现的可能性相等。有限性等可能性我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型 向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?有限性等可能性 某同学随机地向一靶心进行射击,这一试验的结果只有有限个:“命中10环”、“命中9环”、“命中8环”、“命中7环”、“命中6环”、“命中5环”和“不中环”。你认为这是古典概型吗?为什么?有限性等可能性在标准化的考试中既有单选题又有不定项选择题,不定项选择题是从A,B,C,D四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?你知道答对问题的概率有多大呢?例3. 同时掷两个骰子,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是5的结果有多少种?
(3)向上的点数之和是5的概率是多少? 解:(1)掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,它总共出现的情况如下表所示:从表中可以看出同时掷两个骰子的结果共有36种。 (2)在上面的结果中,向上的点数之和为5的结果有4种,分别为:(3)由于所有36种结果是等可能的,其中向上点数之
和为5的结果(记为事件A)有4种,因此,(1,4),(2,3),(3,2),(4,1)为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗? 如果不标上记号,类似于(1,2)和(2,1)的结果将没有区别。这时,所有可能的结果将是:思考与探究 (4,1) (3,2) 两种方法的答案一样吗?为什么?
不做标记的情况下,该模型还是否为古典概型呢?求解古典概型的概率时要注意两点:
(1)古典概型的适用条件:试验结果的有限性
和所有结果的等可能性。
(2)古典概型的解题步骤;
①求出总的基本事件数;
②求出事件A所包含的基本事件数,然后利用

公式P(A)=不重不漏注:有序地写出所有基本事件及某一事件A中所包含的基本事件是解题的关键!1.甲、乙两人玩出拳游戏一次(石头、剪刀、布),则该试验的基本事件数是______,平局的概率是__________,甲赢乙的概率是________,乙赢甲的概率是___________.9
2.一年按365天算,2名同学在同一天过生日的概率为____________
3.一个密码箱的密码由5位数字组成,五个数字都可任意设定为0-9中的任意一个数字,假设某人已经设定了五位密码。
(1)若此人忘了密码的所有数字,则他一次就能把锁打开的概率为____________
(2)若此人只记得密码的前4位数字,则一次就能把锁打开的概率____________ 1/1000001/101/365注:求某个随机事件A包含的基本事件的个数和试验中基本事件的总数的常用方法是列举法(或列表),应做到不重不漏。(2).古典概型的定义和特点(3).古典概型计算任何事件的概率计算公式小结(1).基本事件的两个特点:P(A)=1.知识点:2.思想方法: 谢谢!