(2013春最新版) 北师大版七年级下册:《1.3同底数幂的除法(一)》(学案+教案+课件)

文档属性

名称 (2013春最新版) 北师大版七年级下册:《1.3同底数幂的除法(一)》(学案+教案+课件)
格式 zip
文件大小 1.2MB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2014-01-16 11:24:59

文档简介

素材提供
地球的体积约为1.1×1012m3,月球的体积约为2.2×1010m3,那么地球体积是月球体积的多少倍?
光的速度大约3×105km,如果地球与太阳的距离为1.5×108km,那么太阳光射到地球上需要多少时间?
声音的强弱用分贝表示。通常讲话时的声音是50分贝,它表示声音的强度是105;摩托车发出的声音是110分贝,表示声音的强度是1011;喷气式飞机发出的声音是150分贝,表示声音的强度是1015。那么喷气式飞机发出的声音强度是摩托车的多少倍?
地震的强度通常用里克特震级表示,描绘地震级数的数字表示地震的强度是10的若干次幂。例如用里克特震级表示地震是8级,说明地震的强度是。1992年4月荷兰发生了5级地震,12天后,加利福尼亚发生了7级地震。加利福尼亚地震强度是荷兰地震强度的多少倍?(共17张PPT)
3 同底数幂的除法(第1课时)
1.同底数幂的乘法运算法则:
am · an
=
am+n
(m,n都是正整数)
2.幂的乘方运算法则:
(am)n= (m,n都是正整数)
amn
前面我们学习了哪些幂的运算
在探索法则的过程中我们用到了哪些方法?
(ab)n =
an·bn
(m,n都是正整数)
3.积的乘方运算法则
一种液体每升含有1012个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀虫剂可以杀死109个此种细菌,
(1)要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?
(2)你是怎样计算的?
(3)你能再举几个类似的算式吗?
10 ÷10
12
9
10×···×10
= ————————————
10×10×10×10×···×10
12个10
9个10
=10×10×10
=10
3
1.计算你列出的算式
2.计算下列各式,并说明理由(m>n)
(1)10m÷10n; (2)(-3)m÷(-3)n;
3.你能用字母表示同底数幂的除法运算法则并说明理由吗?
同底数幂相除,底数 ,指数 .
不变
相减
am ÷ an =am-n(a≠0,m,n都是正整数,且m>n)
a ÷ a
m
n
= a
m-n
= —————
a·a·····a
m个a
n个a
a·a·····a
= a·a·····a
m-n个a
例1 计算:
(1) a7÷a4; (2) (-x)6÷(-x)3;
(3) -m8÷m2; (4) (xy)4÷(xy) ;
(5) b2m+2÷b2; (6) (m+n)8÷(m+n)3;
做一做:
3
2
1
3
2
1
0
-1
-2
-3
0
-1
-2
-3
猜一猜:
你是怎么想的?与同伴交流
0
-1
-2
-3
0
-1
-2
-3
猜一猜:
你有什么发现?能用符号表示吗?
我们规定:
a 0 = 1 (a≠0)
a - p = —— (a≠0,p是正整数)
a p
1
你认为这个规定合理吗?为什么?
例2 计算:
用小数或分数分别表示下列各数:
(1)10-3; (2) 70×8-2; (3) 1.6×10-4;
议一议:
计算下列各式,你有什么发现?
与同伴交流
(1) 7-3÷7-5; (2) 3-1÷36;
(3) (—)-5÷(—)2 ; (4) (-8)0÷(-8)-2 ;
我们前面学过的运算法则是否也成立呢?
2
2
1
1
只要m,n都是整数,就有am÷an=am-n成立!
反馈练习:
下面的计算是否正确?如有错误请改正
(1) b6÷b2 =b3 ;
(2) a10÷a-1 =a9 ;
(3) (-bc)4÷(-bc)2 = -b2c2 ;
(4) xn+1÷x2n+1 =x-n .
反馈练习:
计算
(1) (-y)3÷(-y)2 ; (2) x12÷x-4 ;
(3) m÷m0 ; (4) (-r)5÷r 4 ;
(5) -kn÷kn+2 ; (6) (mn)5÷(mn) ;
拓展延伸:
(1) (a- b)8÷(b-a)3
(2) (-38)÷(-3)4
这节课你学到了哪些知识?
现在你一共学习了哪几种幂的运算?它们有什么联系与区别?谈谈你的理解
我们在探索运算法则的过程中用到了哪些方法?
完成课本习题1.4
预习作业:
1)纳米是一种长度单位,1米=1,000,000,000纳米,你能用科学记数法表示1,000,000,000吗?反过来,1纳米等于多少米呢?你能用今天学的知识解决吗?这个结果还能用科学记数法表示吗?
2)你知道生物课中接触的洋葱表皮细胞的直径是多少吗?照相机的快门时间是多长呢?中彩票头奖的可能性是多大?头发的直径又是多少呢?生活中你还见到过哪些较小的数?请你查阅资料,下节课与同伴交流.第一章 整式的乘除
3同底数幂的除法(第1课时)
总体说明:
在七年级上册的“有理数及其运算”和“整式及其加减”中,学生已经学习了数的运算、字母表示数等内容,并且类比有理数的加减学习了整式的加减运算.由“数的运算”转化到“式的运算”是代数学习的重点内容,可以帮助学生体会代数与现实世界、学生生活、其他学科的密切联系,同时代数也为数学本身和其他学科提供了语言、方法和手段.本章“整式的乘除”是让学生在前面的基础上类比有理数的乘除(乘方)来学习整式的乘除运算.为了符合知识的内在联系,在整式的乘、除之前,教科书先提前安排了同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法这四种幂的运算的学习,让学生进一步体会幂的意义,在法则的探索和应用过程中理解算理,掌握基本的运算技能、建立符号意识、发展推理和有条理的表达能力,为后续学习奠定基础.
本课“同底数幂的除法”是四种幂的运算中的最后一种,它与前面三种幂的运算有着类似的法则探索过程,最大的区别在于前面三种运算都是乘法(乘方),而它是除法,因此教学时就要注意两点:一是与数的除法类似,要求除数(式)不为0,二是会出现零指数幂和负整数指数幂,对它们意义的理解将是难点.另外,在“有理数的运算”中学生已经学习了用科学记数法来表示大数,这里同底数幂除法的运算结果中会出现绝对值较小的数据,在规定了负指数幂的意义后,我们就可以顺利地将科学记数法的应用范围推广到绝对值较小的数据.
本课共分两课时,第一课时,主要让学生探索同底数幂的除法法则,了解零指数幂和负整数指数幂;第二课时,主要是用科学记数法表示绝对值较小的数据.
学生起点分析
学生的知识技能基础:小学学生就学习过数的除法,了解除数不能为0;七年级又学习了有理数运算和整式的加减,理解了正整数指数幂的意义;在这一章前面几节课中还学习了同底数幂的乘法、幂的乘方、积的乘方三种幂的运算,会用法则进行计算并解决一些实际问题,具备了类比有理数的运算进行整式的运算的知识基础.理解和运用法则不是学生学习的难点,需要注意的是在计算时学生是否会混淆这四种幂的运算,可以通过分析算理和练习对比,帮助学生提高认识.
学生活动经验基础:在探索前面三种幂的运算法则的过程中,学生已经历了由特殊到一般的归纳过程,并能用幂的意义加以说明,具备了一定的推理能力和表达能力,为本节探索同底数幂的除法法则积累了充足的活动经验.因此本节法则的探索对学生而言并不困难,教学时可以放手让学生自主进行;此前学生只接触过正整数指数幂,因此对零指数幂和负整数指数幂意义的理解是本课的难点,教学时可以通过设计问题串,让学生经历观察、归纳、猜想、解释的过程来加深理解.
教学任务分析
教科书基于学生已有的知识经验基础,提出了本课的具体学习任务:经历探索同底数幂除法运算法则的过程,发展学生的符号感和推理能力;会进行同底数幂的除法,并能解决一些实际问题;体会()及=(是正整数)的合理性,将法则拓广到零指数幂和负整数指数幂的范围.这仅仅是这堂课的一个近期目标,而本节内容从属于“数与代数”领域,因而也应服务于代数教学的远期目标“经历代数的抽象、运算与建模等过程,掌握基本知识、基本技能;建立符号意识,在参与观察、猜想、证明等数学活动中发展合情推理和演绎推理能力,清晰的表达自己的想法;体验解决问题方法的多样性,发展创新意识”,同时在学习中应力图达成有关情感态度目标.
为此,本节课的教学目标是:
1.知识与技能:会进行同底数幂的除法运算,并能解决一些实际问题,了解零指数幂和负整数指数幂的意义,能进行零指数幂和负整数指数幂的乘除法运算.
2.过程与方法:经历探索同底数幂除法运算性质的过程,进一步体会幂的意义,经历观察、归纳、猜想、解释等数学活动,体验解决问题方法的多样性,发展学生的合情推理和演绎推理能力以及有条理的表达能力.
3.情感与态度:在解决问题的过程中了解数学的价值,体会数学的抽象性、严谨性和广泛性.
教学重点:同底数幂除法法则的探索和应用,理解零指数和负整数指数幂的意义,将运算法则拓广到整数指数幂的范围
教学难点:理解零指数幂和负整数指数幂的意义
教学过程设计
本课时设计了七个教学环节:复习回顾、情境引入、归纳法则、探索拓广、反馈延伸、课堂小结、布置作业.
第一环节 复习回顾
活动内容:前面我们学习了哪些幂的运算 在探索法则的过程中我们用到了哪些方法?
(1)同底数幂相乘,底数不变,指数相加. (m,n是正整数)
(2)幂的乘方,底数不变,指数相乘.(m,n是正整数)
(3)积的乘方等于积中各因数乘方的积. (n是正整数)
活动目的:学习同底数幂的除法要借助前面三种幂的运算的活动经验和知识基础,因此这个环节的目的是回顾前面的知识和方法,为下面自主探索、归纳法则做好铺垫.
活动的注意事项:教学时可以让学生自己写出三种幂的运算法则的叙述和字母表示,要注意引导学生回顾三种法则探索过程中用到的归纳思想和数学的推理方法,只要他们用自己的语言描述清楚即可,如学生可能会回答“由具体的例子的计算(特殊)得到法则的符号表示(一般)”,“用幂的意义说明了法则的正确性”等等.
第二环节 情境引入
活动内容:一种液体每升含有 1012 个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀虫剂可以杀死 109 个此种细菌,
要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?
你是怎样计算的?
你能再举几个类似的算式吗?
活动目的:用实际背景来引入同底数幂的除法,让学生体会数学与现实生活的紧密联系,而这个问题学生运用有理数知识就能解决,为下面类比解决“式”的问题提供思路,第(3)问的目的是帮助学生抓住“同底数幂”“相除”这些本质特征,同时也为进一步的探索提供素材.
活动的注意事项:解决问题(1)学生可能根据题意列出算式,也有可能列出,应让学生认识到两种形式的实质是一样的.
问题(2)用到的是有理数的运算,教学时应鼓励学生独立思考,在黑板上呈现不同的计算过程,并说明每一步的算理,学生可能出现不同的解决方法:
可能先将幂还原成大数再用分数的约分来计算:
(滴);
也可能先逆用同底数幂的乘法再进行约分来计算:
(滴)
问题(3)应尽可能多的在黑板上呈现学生举的算式,在教学时可以通过追问“这些算式举的对不对?”帮助学生抓住特征:同底数幂、除法.还可以再追问“这些算式应该叫做什么运算呢?”引入这节课的研究对象:同底数幂的除法运算.
第三环节 归纳法则
活动内容:1.计算你列出的算式
(选作)2.计算下列各式,并说明理由(m>n)
3.你能用字母表示同底数幂的除法运算法则并说明理由吗?
活动目的:让学生从有理数的运算出发,由特殊逐渐过渡到一般,得到同底数幂的运算法则:(a≠0,m,n是正整数,且m>n),再运用幂的意义加以说明.在此过程中,发展学生类比、归纳、符号演算、推理能力和有条理的表达能力.
活动的注意事项:这里的教学方式可以根据上一环节学生的举例情况灵活处理:
方式一,如果学生列出的算式比较全面:既有只含有理数的算式,又有既含字母又含数的算式(如类似于活动2的指数为字母或是底数为字母的),还有只含字母的算式(类似于法则的),那么教学时可以先引导学生将所列举的算式进行分类,再按照由“数”到“混合”再到“字母”的顺序分三个层次进行探索,让学生自己完成由特殊过渡到一般的过程,这样就不用再进行活动2和3.
方式二:如果学生列出的算式不够全面,就可以先将活动2的内容补充进来,再让学生观察运算前后指数和底数发生了怎样的变化,从特例中归纳出同底数幂除法的运算性质:,培养学生的合情推理能力.最后进行活动3,在运用符号运算的过程中培养学生的演绎推理能力.
有了前面探索法则的经验基础,类比有理数的计算过程学生不难得出,但学生可能会忽视“a≠0,m,n是正整数,且m>n”的要求,教学时可以追问“a都可以取哪些值呢?”来引导学生类比有理数的除法中对除数不为0的要求来理解这里的a≠0,再借助上面的计算约分时出现m-n个a的过程得到m>n.而当m=n和m活动内容:例1 计算:
活动目的:这里为了更加全面的巩固同底数幂除法运算,在教材的基础上增加了(3)和(6)两个小题,这些题目由易到难,目的在于逐渐加深学生对同底数幂的除法的理解,帮助学生体会中的a可以代表数,也可以代表单项式、多项式等.
活动的注意事项:在教学时应重视对算理的理解,每一小题都应先让学生判断是不是同底数幂的除法运算,再说出每一步运算的道理,有意识地培养他们有条理的思考和语言表达能力.学生可能在计算第(3)(4)小题时出现问题,第(3)题的“-”号,学生在前几节课中解决过类似问题,教学时可以引导他们与第(2)题对比,加深理解;第(4)题在同底数幂除法计算后增加了积的乘方的运算,应关注学生对学过的几种幂的运算是否能理解和区别,如果学生出现漏算或混淆的情况,可以让先他们判断运算,再说明算理,还可以根据实际教学情况补充几道对比练习,帮助学生提高认识.
第四环节 探索拓广
(一)探索
活动内容:1. 做一做:
104 =10000, 24 =16
10()=1000, 2()=8
10()=100, 2()=4
10()=10, 2()=2
2. 猜一猜:
下面的括号内该填入什么数?你是怎么想的?与同伴交流:
10()=1 2()=1
10()=0.1 2()=
10()=0.01 2()=
10()=0.001 2()=
3.你有什么发现?能用符号表示你的发现吗?
4.你认为这个规定合理吗?为什么?
活动目的:学习了有理数的乘方和前面几种幂的运算后,学生对正整数指数范围内幂的意义理解的很好:当p为正整数时,表示p个a相乘,但是不能理解成0个a相乘,同样也不能理解成-p个a相乘,因此理解零指数幂和负整数指数幂的意义对学生而言是个难点.教科书设计了“想一想”和“猜一猜”通过简单的有理数幂的探索,让学生猜想得到零指数幂和负整数指数幂的意义.这里在教科书原有的基础上又补充了3、4两个问题,目的是就让学生完整的经历观察、归纳、猜想、解释的过程,从而感悟先由具体问题概括出结论,再通过一般性证明来说明结论的合理性这样一个解决问题的方法,数学合情推理和演绎推理能力的培养就蕴含在这样的思维过程之中.同时,不同的解释思路可以帮助学生从不同的角度、更好地理解零指数幂、负整数指数幂的意义.
活动注意事项:活动1对学生而言并不困难,教学时学生可能会找到规律:底数为10时,指数每减小1,幂的值就会缩小;底数为2时,指数每减小1,幂的值就会缩小.学生也可能进而归纳“底数为a时,指数每减小1,幂的值就会缩小”可以追问“这里的a能取哪些值?”从而让学生体会.
活动2对学生来说是有些难度的,可以引导学生保持上面的规律进行猜想,教学时应给学生充分的独立思考和小组交流的时间.
活动3从数的变化规律中进行分析、归纳与概括,再将猜想用符号一般性的表示出来得到:、,这养的过程可以发展学生的合情推理能力.
活动4通过解释结论的合理性来发展学生演绎推理能力,教学时应鼓励学生从不同的角度进行思考和解释,帮助他们更好地理解零指数幂、负整数指数幂的意义.学生可能出现的解释方法有:
方法一,从同底数幂的除法和约分的角度来进行说明:
我们前面这样推导了同底数幂的除法法则
,(a≠0,m,n是正整数,且m>n)
当m=n时,我们可以类似的得到
1,(,m,n为正整数);
当m,(,p为正整数).
方法二,从乘除法的逆运算关系来说明:
因为所以
在这一结论的基础上再进一步得到
因为所以(,p为正整数)
(二)拓广
活动内容:1. 例2 计算:用小数或分数分别表示下列各数:
2. 议一议:计算下列各式,你有什么发现?与同伴交流
3. 当指数拓广到零和负整数范围后,我们前面学过的同底数幂的乘法、幂的乘方与积的乘方的运算法则是否也成立呢?
活动目的:活动1目的是巩固学生对零指数幂和负整数指数幂意义的理解,活动2、3将所有幂的运算法则都拓广到整数指数幂的范围,可以帮助学生形成完整的知识体系.
活动注意事项:活动1主要是为了考察学生对有理数的零指数幂和负整数指数幂意义的理解,教学中应关注学生在计算中出现的问题,及时了解学生存在的困惑.
活动2应注意引导学生在计算和交流的基础上,从“数”过渡到“式”,从而得到一般的结论:只要m、n是整数,前面探索的同底数幂的除法法则就成立.
在将同底数幂的除法法则拓广到零指数幂和负整数指数幂范围后,学生自然会产生疑问:前面的几种幂的运算是否也成立呢?因此,活动3是活动2的自然延伸,这里可以让学生类比活动2自主解决,教师应关注学生是否能独立完成“举特例观察、归纳一般结论”的过程.如果时间较紧,可以让学生组内分工对三种运算分别进行探索.
第五环节 反馈延伸
活动内容:反馈练习:
1.下面的计算是否正确?如有错误请改正:
2.计算
拓展延伸:(1)
(2)(-38)÷(-3)4
活动目的:运算能力的形成不是一蹴而就的,它的发展是从简单到复杂,从低级到高级,从具体到抽象,有层次地进行的,因此这里设计了由易到难的两组练习题,对本节课所学的知识进行巩固和拓展,发展学生的运算能力.
活动的注意事项:反馈练习中学生可能在2计算第(4)小题中出现问题,这里应先转化为同底数幂,再相除,这道题也为拓展延伸做了铺垫.
拓展延伸应注意(1)中与不是同底数幂,计算时应先化成同底,学生既可以把化成;也可以把化成,教学时应让学生充分交流、展示各自的作法,从而对于算理有更为清楚的认识.
第六环节 课堂小结
活动内容:
这节课你学到了哪些知识?
现在你一共学习了哪几种幂的运算?它们有什么联系与区别?谈谈你的理解
我们在探索运算法则的过程中用到了哪些方法?
活动目的:本节课是幂的运算中最后一节,因此这里不仅回顾了本节课所学的内容,还将这四种幂的运算进行了对比,对探索过程中的类比、归纳等数学方法进行回顾.这样设计的目的是加深学生对四种幂的运算的理解,更好地形成知识体系,帮助学生体会解决问题的思路与方法的共性.
活动的注意事项:鼓励学生畅谈自己学习体会,激发学生对数学的学习兴趣与信心,还可以根据学情适当引导学生体会幂的运算法则的特点:①运算中的底数不变,只对指数做运算,且指数的运算比幂的运算低一级②法则中的底数和指数具有普遍性,既可以是数,也可以是式③幂的运算中指数都是整数.
第七环节 布置作业
1.完成课本习题1.4
2.预习作业:
(1)纳米是一种长度单位, 1米=1,000,000,000纳米,你能用科学记数法表示1,000,000,000吗?反过来,1纳米等于多少米呢?你能用今天学的知识解决吗?这个结果还能用科学记数法表示吗?
(2)你知道生物课中接触的洋葱表皮细胞的直径是多少吗?照相机的快门时间是多长呢?中彩票头奖的可能性是多大?头发的直径又是多少呢?生活中你还见到过哪些较小的数?请你查阅资料,下节课与同伴交流
四、教学设计反思:
1.关注知识和方法的前后衔接
数学的学习是一个连贯的过程,数学知识是前后衔接逐步形成体系的,数学思想方法是在不断的探索应用过程中逐渐积累和体会的,因此,在教学时怎样引导学生把新知识与已熟悉的旧知识巧妙联系起来、怎样运用前面的数学活动经验来解决新的问题是我们教师必须进行深入思考和精心设计的.
在本节课的教学设计中有以“旧”引“新”: 借助前面的经验让学生自主探索同底数幂的除法法则,在多个环节中类比“数”来解决“式”的问题;也有讲“新”联“旧”:将新学的和前面三种幂的运算法则都拓广到整数指数幂的范围,在小结中对四种幂的运算进行对比回顾.这样的设计充分利用了学生原有的知识和经验基础,有利于学生知识体系的形成,让学生深刻体会了解决不同的问题时蕴涵的相同数学思想方法.
2.改进教学和评价方式,为学生提供自主探索的机会
数学教学活动,应激发学生兴趣,调动学生积极性,引发学生的数学思考;学生学习应当是一个生动活泼的、主动地和富有个性的过程,因此我们的数学课堂应该努力改进教学和评价的方式,给学生提供更多自主探索的机会.在这节课的设计中就进行了一些尝试:在学习“探索同底数幂的除法法则”和“将幂的运算拓广到整数指数幂范围”这两个重点时,根据学生已有的知识和经验基础,将举特例到一般验证的过程大胆的放手给学生,教师只做适当的引导,让学生通过自主探索、合作交流的方式完成了对知识和方法的学习.
对学生的评价也作出了相应的改进:不仅关注习题的正确率,而且更加注重对学生以下两方面的评价:一是学生在活动中的投入程度,如是否能积极主动地投入活动,向同伴解释自己的想法,听取别人的意见和建议等;二是学生在活动中的水平,如是否能通过独立思考探索出运算法则,是否能有条理的表达自己的思考过程,是否有独特的解决问题的方法,是否能进行反思并提出一些新的问题等.采用这样的教学和评价方式可以更好地提高学生解决问题的能力,丰富他们解决问题的策略,从而实现对数学思维的培养.
实际教学时,如果面对的学生知识和能力的基础更好,放手给学生的内容还可以再多一些,甚至可以让学生课前自主学习,课上通过学生自主讲解展示学习效果,教师只需要根据学生自学的情况点拨部分难点(例如零指数幂、负整数指数幂的意义等)即可.幂的由来
幂的概念的形成是相当曲折和缓慢的。
我国古代,幂字至少有10种不同的写法,最简单的是“冖”。“幂”作名词用是用来覆盖食物的巾,作动词用就是用巾来覆盖。《说文解字》解释说:“冖,覆也,从一下垂也。”
用一块方形的布盖东西,四角垂下来,就成“冖”的形状。将这意义加以引申,凡是方形的东西也可叫做幂。再进一步推广,矩形面积或两数的积(特别是一个数自乘的结果)也叫做幂。这种推广是从刘徽开始的。
刘徽在263年为《九章算术》作注,在“方田”章求矩形面积法则下面写道:“此谓田幂”。他还说,长和宽相乘的积叫幂。这是在数学文献中第一次出现幂。在“勾股”章中,刘徽表述勾股定理为:“勾股幂合以成弦幂。”这里幂是指边自乘的结果或正方形面积。
300多年以后,李淳凤重注《九章算术》,他不同意刘徽这样使用幂字。到了明朝,有些数学书中完全不使用幂字。
1607年,利马窦和徐光启合译欧几里得《几何原本》,在译本中徐光启重新使用了幂字。他说:“自乘之数曰幂。”这是第一次给幂这个概念下定义。
另一方面,幂的概念的形成还受到国外的影响。1591年,法国数学家韦达的代数名著《分析方法入门》中曾经用拉丁文字表达“幂”,以后译成英文相当于“power”。1935年,我国出版《数学名词》,把“power”译成“幂”,这个术语从此才算确定下来。等幂和问题
这几节课我们学习了一些幂的运算,下面让我们再来研究一个新的数学问题——等幂和,什么是“等幂和”呢?
我们先来看下面这两组自然数,每组各有三个数,每个都是六位数字,把这两组数分别相加,就会发现它们的和是完全相等的,即:
123789+561945+642864 =242868+323787+761943
这样的性质,自然算不上什么稀罕。可是,要知道它们各自的平方之和也是相等的,那就是说:
1237892+5619452+6428642=2428682+3237872+7619432
如果不信,请算一算吧!算过以后,你也许会伸伸舌头,说一声:“妙啊!”
且慢,真正的妙事还在后头呢!请把每个数的最左边一位数字都抹掉,你会发现,对剩下的数来说,上述的奇妙关系仍然成立,即:
23789+61945+42864=42868+23787+61943
237892+619452+428642=428682+237872+619432
事情真怪。让我们再抹掉每个数最左边的一位数字试试看吧!通过计算,上述性质依然保存着:
3789+1945+2864=2868+3787+1943
37892+19452+28642=28682+37872+19432
现在,我们索性一不做、二不休,继续干下去了。我们发现,尽管每次抹掉最左边的一位数字,可是这种奇妙的性质总是被“原封不动”地保存了下来:
789+945+864=868+787+943
7892+9452+8642=8682+7872+9432
89+45+64=68+87+43
892+452+642=682+872+432
直到最后只剩下个位数,这一“性质”依旧“巍然不动”:
9+5+4=8+7+3
92+52+42=82+72+32
这就像“金蝉脱壳”一般,脱到最后一层,金蝉却还是货真价实的金蝉。
现在我们还是从原来的两组数出发,可是这一次却“反其道而行之”,即把两组数的数字逐个逐个地从右边抹掉。经过这样的剧烈变动,这种性质总不见得保持下来了吧 可是,这种性质居然还是保存了下来:
12378+56194+64286=24286+32378+76194
123782+561942+642862=242862+323782+761942
……
直到最后抹得只剩下个位数时也是如此:
1+5+6=2+3+7
12+52+62=22+32+72
这组数字是不是很有趣呢?
像这样将左右不全等的等式两边各数字做同次方(幂)并相加后,能使等式成立的问题在数论上叫做“等幂和问题”,在国内外,它一直吸引着大批爱好者,但至今仍未能彻底解决。
你能不能也找一组这样的数呢?试试看吧!1.3 同底数幂的除法
一、学习目标
了解同底数幂的除法的运算性质,并能解决一些实际问题
二、学习重点:会进行同底数幂的除法运算。
三、学习难点:同底数幂的除法法则的总结及运用
(一)预习准备
(1)预习书p9-13
(2)思考:0指数幂和负指数幂有没有限制条件?
(3)预习作业:
1.(1)28×28=    (2)52×53=   (3)102×105=    (4)a3·a3=   
2.(1)216÷28=   (2)55÷53=   (3)107÷105=    (4)a6÷a3=   
(二)学习过程
上述运算能否发现商与除数、被除数有什么关系?
得出:同底数幂相除,底数     ,指数     . 
即:am÷an=       (,m,n都是正整数,并且m>n)
练习:
(1)  (2)   (3)=
(4)=    (5)  (6)(-ab)5÷(ab)2=   
=            (8)=           
提问:在公式中要求 m,n都是正整数,并且m>n,但如果m=n或m计算:32÷32 103÷103 am÷am(a≠0)
        =       (a≠0)
32÷32=3(   ) =3(  )   103÷103=10(   ) =10(  ) am÷am=a(   ) =a(  )(a≠0)
于是规定:a0=1(a≠0) 即:任何非0的数的0次幂都等于1
最终结论:同底数幂相除:am÷an=am-n(a≠0,m、n都是正整数,且m≥n)
想一想: 10000=104 ,     16=24
   1000=10( ), 8=2( )
   100=10 ( ) , 4=2( )
   10=10 ( ), 2=2( )
猜一猜:  1=10( ) 1=2( )
     0.1=10( ) =2( )
0.01=10( ) =2( )
0.001=10( ) =2( )
负整数指数幂的意义:(,p为正整数)或(,p为正整数)
例1 用小数或分数分别表示下列各数:
练习:
1.下列计算中有无错误,有的请改正
       
       
2.若成立,则满足什么条件? 3.若无意义,求的值
4.若,则等于?    5.若,求的的值
6.用小数或分数表示下列各数:
(1) =       (2)=       (3) =    
(4)=       (5)4.2=     (6)=        
7.(1)若= (2)若
(3)若0.000 000 3=3×,则 (4)若
拓展:
8.计算:(n为正整数) 9.已知,求整数x的值。
回顾小结:同底数幂相除,底数不变,指数相减。