第8章 函数应用专题(3)-2022-2023学年高一上学期数学苏教版(2019)必修第一册(含答案)

文档属性

名称 第8章 函数应用专题(3)-2022-2023学年高一上学期数学苏教版(2019)必修第一册(含答案)
格式 zip
文件大小 346.9KB
资源类型 教案
版本资源 苏教版(2019)
科目 数学
更新时间 2022-12-18 16:00:34

文档简介

高一上学期数学专题复习:第8章《函数应用》专题(3)
1.用清水洗衣服,若每次能洗去污垢的,要使存留的污垢不超过,则要洗的次数是 ( )
A. B. C. D.
2.某食品的保鲜时间(单位:小时)与储存温度(单位:)满足函数关系(,、为常数).若该食品在的保鲜时间是小时,在的保鲜时间是小时,则关于该食品保鲜的描述正确的结论是 ( )
A. B.储存温度越高保鲜时间越长
C.在的保鲜时间是小时 D.在的保鲜时间是小时
3.有一组实验数据如表所示:
则下列所给函数模型较不适合的有 ( )
A. B.
C. D.
4.某公司通过统计分析发现,工人工作效率与工作年限(),劳累程度(),劳动动机()相关,并建立了数学模型.已知甲、乙为该公司的员工,则下列说法正确的有 ( )
A.甲与乙工作年限相同,且甲比乙工作效率高,劳动动机低,则甲比乙劳累程度强
B.甲与乙劳动动机相同,且甲比乙工作效率高,工作年限短,则甲比乙劳累程度弱
C.甲与乙劳累程度相同,且甲比乙工作年限长,劳动动机高,则甲比乙工作效率高
D.甲与乙劳动动机相同,且甲比乙工作年限长,劳累程度弱,则甲比乙工作效率高
5.边际函数是经济学中一个基本概念,在国防、医学、环保和经济管理等许多领域都有十分广泛的应用,函数的边际函数定义为.某公司每月最多生产75台报警系统装置,生产台的收入函数(单位:元),其成本的数(单位:元),利润是收入与成本之差,设利润函数为,则以下说法正确的是 ( )
A.取得最大值时每月产量为台
B.边际利润函数的表达式为
C.利润函数与边际利润函数不具有相同的最大值
D.边际利润函数说明随着产量的增加,每台利润与前一台利润差额在减少
二、解答题
6.在治疗新型冠状病毒引起的肺炎的过程中,需要某医药公司生产的某种药物,此药物的年固定成本为250万元,每生产x千件需投入成本.当年产量不足80千件时,(万元);当年产量不小于80千件时,(万元),每件药品售价为0.05万元.在疫情期间,该公司生产的药品能全部售完.
(1)写出年利润(万元)关于年产量x(千件)的函数解析式;
(2)当年产量为多少千件时,在这一药品的生产中所获利润最大 该公司决定将此药品所获利润的1%用来购买防疫物资捐赠给医疗机构,当这一药品的生产中所获年利润最大时,可购买多少万元的防疫物资
7.据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源的距离成反比,比例常数为,其关系式为.现已知相距20km的,两家化工厂(污染源)的污染强度分别为5,2,它们连线上任意一点处的污染指数等于两化工厂对该处的污染指数之和.设,.若为的中点时,处的污染指数为1.4.
(1)试将表示为的函数;
(2)求的最小值.
8.近年来,人们对能源危机、气候危机有了更加清醒的认识,各国对新型节能环保产品的需求急剧扩大,同时,对新型节能环保产品的研发投入产量增加.杭州某企业为响应国家号召,研发出一款新型节能环保产品,计划生产投入市场.已知该产品的固定研发成本为180万元,此外,每生产一万台该产品需另投入450万元.设该企业一年内生产该产品x(0<x≤50)万台且能全部售完,根据市场调研,该产品投入市场的数量越多,每台产品的售价将适当降低.已知每万台产品的销售收入为万元,满足:.
(1)写出年利润(单位:万元)关于年产量x(单位:万台)的函数关系式;(利润=销售收入﹣固定研发成本﹣产品生产成本)
(2)当年产量为多少万台时,该企业的获利最大 此时的最大利润为多少
9.有一个农场计划用铁网栅栏建设一个矩形养殖棚,如图,养殖棚的后面是现成的土墙,其他三面用铁网栅栏,侧面长度为米.
(1)若铁网栅栏长共米且养殖棚内部两侧和前面都要留出宽米的投喂通道.
①求养植棚的有效养殖面积(平方米)与(米)之间的函数关系式,并求有效面积为(平方米)时的值;
②若后面现成的土墙足够长.求怎样设计,才能使有效养殖面积最大.
(2)若要使建设的养植棚面积为平方米,铁网栅栏建设费用为元/米,那么,当为何值时,铁网栅栏的总建设费用最小,并求出的最小值.
10.为进一步奏响“绿水青山就是金山银山”的主旋律,某旅游风景区以“绿水青山”为主题,特别制作了旅游纪念章,并决定近期投放市场.根据市场调研情况,预计每枚该纪念章的市场价y(单位:元)与上市时间x(单位:天)的数据如下表
上市时间x/天 2 6 32
市场价y/元 148 60 73
(1)根据上表数据,从①,②,③,④中选取一个恰当的函数描述每枚该纪念章的市场价y与上市时间x的变化关系(无需说明理由),并利用你选取的函数,求该纪念章市场价最低时的上市天数及最低市场价;
(2)记你所选取的函数,若对任意,不等式恒成立,求实数k的取值范围.高一上学期数学专题复习:第8章《函数应用》专题(3)
1.用清水洗衣服,若每次能洗去污垢的,要使存留的污垢不超过,则要洗的次数是 ( )
A. B. C. D.
1.CD.
2.某食品的保鲜时间(单位:小时)与储存温度(单位:)满足函数关系(,、为常数).若该食品在的保鲜时间是小时,在的保鲜时间是小时,则关于该食品保鲜的描述正确的结论是 ( )
A. B.储存温度越高保鲜时间越长
C.在的保鲜时间是小时 D.在的保鲜时间是小时
2.AC.
3.有一组实验数据如表所示:
则下列所给函数模型较不适合的有 ( )
A. B.
C. D.
3.ABD.
4.某公司通过统计分析发现,工人工作效率与工作年限(),劳累程度(),劳动动机()相关,并建立了数学模型.已知甲、乙为该公司的员工,则下列说法正确的有 ( )
A.甲与乙工作年限相同,且甲比乙工作效率高,劳动动机低,则甲比乙劳累程度强
B.甲与乙劳动动机相同,且甲比乙工作效率高,工作年限短,则甲比乙劳累程度弱
C.甲与乙劳累程度相同,且甲比乙工作年限长,劳动动机高,则甲比乙工作效率高
D.甲与乙劳动动机相同,且甲比乙工作年限长,劳累程度弱,则甲比乙工作效率高
4.BCD.
5.边际函数是经济学中一个基本概念,在国防、医学、环保和经济管理等许多领域都有十分广泛的应用,函数的边际函数定义为.某公司每月最多生产75台报警系统装置,生产台的收入函数(单位:元),其成本的数(单位:元),利润是收入与成本之差,设利润函数为,则以下说法正确的是 ( )
A.取得最大值时每月产量为台
B.边际利润函数的表达式为
C.利润函数与边际利润函数不具有相同的最大值
D.边际利润函数说明随着产量的增加,每台利润与前一台利润差额在减少
5.BCD.
二、解答题
6.在治疗新型冠状病毒引起的肺炎的过程中,需要某医药公司生产的某种药物,此药物的年固定成本为250万元,每生产x千件需投入成本.当年产量不足80千件时,(万元);当年产量不小于80千件时,(万元),每件药品售价为0.05万元.在疫情期间,该公司生产的药品能全部售完.
(1)写出年利润(万元)关于年产量x(千件)的函数解析式;
(2)当年产量为多少千件时,在这一药品的生产中所获利润最大 该公司决定将此药品所获利润的1%用来购买防疫物资捐赠给医疗机构,当这一药品的生产中所获年利润最大时,可购买多少万元的防疫物资
6.【解】(1)当时,
;……………………2分
当时,,………4分
因此……………………6分
当时,,
故,……………………8分
当时,,
当,即时所获利润取到最大值.……………………10分
因此当(千件)时生产中所获利润最大,此时可购买万元抗疫物资.
……………………12分
7.据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源的距离成反比,比例常数为,其关系式为.现已知相距20km的,两家化工厂(污染源)的污染强度分别为5,2,它们连线上任意一点处的污染指数等于两化工厂对该处的污染指数之和.设,.若为的中点时,处的污染指数为1.4.
(1)试将表示为的函数;
(2)求的最小值.
7.【解】(1)由题设知,,点受到处的污染指数为,受到处的污染指数为,……………………2分
所以处的污染指数,……………………4分
当时,,解得,所以,………………6分
(2)
,……………………10分
当且仅当时,,等号成立.……………12分
8.近年来,人们对能源危机、气候危机有了更加清醒的认识,各国对新型节能环保产品的需求急剧扩大,同时,对新型节能环保产品的研发投入产量增加.杭州某企业为响应国家号召,研发出一款新型节能环保产品,计划生产投入市场.已知该产品的固定研发成本为180万元,此外,每生产一万台该产品需另投入450万元.设该企业一年内生产该产品x(0<x≤50)万台且能全部售完,根据市场调研,该产品投入市场的数量越多,每台产品的售价将适当降低.已知每万台产品的销售收入为万元,满足:.
(1)写出年利润(单位:万元)关于年产量x(单位:万台)的函数关系式;(利润=销售收入﹣固定研发成本﹣产品生产成本)
(2)当年产量为多少万台时,该企业的获利最大 此时的最大利润为多少
8.【解】(1)当0<x≤20时,=x﹣(180+450x)=610x﹣2x2﹣180﹣450x
=﹣2x2+160x﹣180,……………………2分
当20<x≤50时,……4分
所以,.……………………6分
(2)当0<x≤20时,=﹣2x2+160x﹣180=﹣2(x﹣40)2+3020,
则函数在(0,20]上单调递增,
故当x=20时,取得最大值,且最大值为2220;……………………8分
当20<x≤50时,

当且仅当,即x=30(负值舍去)时等号成立,
此时取得最大值,且最大值为2270,……………………10分
因为2270>2220,
所以,当年产量为30万台时,该企业的获利最大,且此时的最大利润为2270万元.
……………………12分
9.有一个农场计划用铁网栅栏建设一个矩形养殖棚,如图,养殖棚的后面是现成的土墙,其他三面用铁网栅栏,侧面长度为米.
(1)若铁网栅栏长共米且养殖棚内部两侧和前面都要留出宽米的投喂通道.
①求养植棚的有效养殖面积(平方米)与(米)之间的函数关系式,并求有效面积为(平方米)时的值;
②若后面现成的土墙足够长.求怎样设计,才能使有效养殖面积最大.
(2)若要使建设的养植棚面积为平方米,铁网栅栏建设费用为元/米,那么,当为何值时,铁网栅栏的总建设费用最小,并求出的最小值.
9.【解】(1)①由图可知,,
由,解得,
故养植棚的有效养殖面积(平方米)与(米)之间的函数关系式为,其中,……………………3分
由,可得,解得或;
②当时,取最大值,即(平方米),
即当垂直与墙的一边边长为米时,有效养殖面积最大.……………………6分
(2)由题意可得(元),
当且仅当时,即当时,等号成立,……………………10分
故当米时,铁网栅栏的总建设费用最小,并求出的最小值为元.………12分
10.为进一步奏响“绿水青山就是金山银山”的主旋律,某旅游风景区以“绿水青山”为主题,特别制作了旅游纪念章,并决定近期投放市场.根据市场调研情况,预计每枚该纪念章的市场价y(单位:元)与上市时间x(单位:天)的数据如下表
上市时间x/天 2 6 32
市场价y/元 148 60 73
(1)根据上表数据,从①,②,③,④中选取一个恰当的函数描述每枚该纪念章的市场价y与上市时间x的变化关系(无需说明理由),并利用你选取的函数,求该纪念章市场价最低时的上市天数及最低市场价;
(2)记你所选取的函数,若对任意,不等式恒成立,求实数k的取值范围.
10.【解】(1)由题表知,随着时间的增大,的值随的增大,先减小后增大,而所给的函数,和在上显然都是单调函数,不满足题意,故选择.
把,,分别代入,得,
解得,……………………2分
∴,.
又,
∴当且仅当时,即当时,y有最小值,且.
故当该纪念章上市12天时,市场价最低,最低市场价为每枚48元;……………………5分
(2)原不等式可以整理为:,,
因为对,都有不等式恒成立,
则.……………………7分
(i)当时,,
当且仅当时,即当时, .
∴,
解得,不符合假设条件,舍去.……………………9分
(ii)当时,在单调递增,故,
只需.
整理得:,
∴(舍去),……………………11分
综上,实数k的取值范围是.……………………12分