2022——2023高一数学期末考试章章通关练——第七章 概率2(含解析)

文档属性

名称 2022——2023高一数学期末考试章章通关练——第七章 概率2(含解析)
格式 docx
文件大小 747.3KB
资源类型 教案
版本资源 北师大版(2019)
科目 数学
更新时间 2022-12-19 09:37:31

图片预览

文档简介

一、单选题
1.某大街在甲、乙、丙三处设有红绿灯,汽车在这三处遇到绿灯的概率分别是,则汽车在这三处共遇到两次绿灯的概率为( )
A. B. C. D.
2.甲 乙两队进行羽毛球决赛,现在的情形是甲队只要再赢一局就获得冠军,乙队需要再赢两局才能得到冠军,若甲队每局获胜的概率为,则甲队获得冠军的概率为( )
A. B. C. D.
3.甲乙两选手进行象棋比赛,已知每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4,若采用三局二胜制,则甲最终获胜的概率为( )
A.0.36 B.0.352 C.0.288 D.0.648
4.已知样本空间为,x为一个基本事件.对于任意事件A,定义,给出下列结论:①;②对任意事件A,;③如果,那么;④.其中,正确结论的个数是( )
A.1个 B.2个 C.3个 D.4个
5.投壶是我国古代的一种娱乐活动,比赛投中得分情况分“有初”,“贯耳”,“散射”,“双耳”,“依竿”五种,其中“有初”算“两筹”,“贯耳”算“四筹”,“散射”算“五筹”,“双耳”算“六筹”.“依竿”算“十筹”,三场比赛得筹数最多者获胜.假设甲投中“有初”的概率为,投中“贯耳”的概率为,投中“散射”的概率为,投中“双耳”的概率为,投中“依竿”的概率为,未投中(0筹)的概率为.乙的投掷水平与甲相同,且甲 乙投掷相互独立.比赛第一场,两人平局;第二场甲投中“有初”,乙投中“双耳”,则三场比赛结束时,甲获胜的概率为( )
A. B. C. D.
6.一个系统如图所示,,,,,,为6个部件,其正常工作的概率都是,且是否正常工作是相互独立的,当,都正常工作或正常工作,或正常工作,或,都正常工作时,系统就能正常工作,则系统正常工作的概率是( )
A. B. C. D.
7.一个学习小组有5名同学,其中2名男生,3名女生.从这个小组中任意选出2名同学,则选出的同学中既有男生又有女生的概率为( )
A. B. C. D.
8.袋中有红 黄两种颜色的球各一个,这两个球除颜色外完全相同,从中任取一个,有放回地抽取3次,记事件表示“3次抽到的球全是红球”,事件表示“次抽到的球颜色全相同”,事件表示“3次抽到的球颜色不全相同”,则( )
A.事件与事件互斥 B.事件与事件不对立
C. D.
二、多选题
9.某人有6把钥匙,其中n把能打开门.如果随机地取一把钥匙试着开门,把不能开门的钥匙扔掉,设第二次才能打开门的概率为p,则下列结论正确的是( )
A.当时, B.当时,
C.当时, D.当时,
10.下列说法不正确的是( )
A.若A,B为两个事件,则“A与B互斥”是“A与B相互对立”的必要不充分条件
B.若A,B为两个事件,则
C.若事件A,B,C两两互斥,则
D.若事件A,B满足,则A与B相互对立
11.以下结论中正确的有( )
A.投掷一枚骰子,事件“出现的点数至少是5点”和“出现的点数至多是2点”是互斥事件
B.投掷一枚硬币,事件“结果为正面向上”和“结果为反面向上”是对立事件
C.5个阉中有一个是中签的阉,甲、乙两人同时各抽一个,事件“甲中签”和“乙中签”是对立事件
D.从两男两女四个医生中随机选出两人组建救援队,抽选结果的基本事件是“一男一女”、“两个男医生”、“两个女医生”,共三种
12.已知事件,,且,,则下列结论正确的是( )
A.如果,那么,
B.如果与互斥,那么,
C.如果与相互独立,那么,
D.如果与相互独立,那么,
三、填空题
13.已知甲、乙两人每次射击命中目标的概率分别为和,甲和乙是否命中目标互不影响,且各次射击是否命中目标也互不影响.若按甲、乙、甲、乙……的次序轮流射击,直到有一人击中目标就停止射击,则停止射击时,甲射击了两次的概率是______.
14.某种品牌摄像头的使用寿命(单位:年)服从正态分布,且使用寿命不少于2年的概率为0.8,使用寿命不少于6年的概率为0.2.某校在大门口同时安装了两个该种品牌的摄像头,则在4年内这两个摄像头都能正常工作的概率为___________.
15.若三个原件A,B,C按照如图的方式连接成一个系统,每个原件是否正常工作不受其他元件的影响,当原件A正常工作且B,C中至少有一个正常工作时,系统就正常工作,若原件A,B,C正常工作的概率依次为0.7,0.8,0.9,则这个系统正常工作的概率为______
16.如图所示,高尔顿钉板是一个关于概率的模型,每一黑点表示钉在板上的一颗钉子,它们彼此的距离均相等,上一层的每一颗的水平位置恰好位于下一层的两颗正中间.小球每次下落时,将随机的向两边等概率的落下.当有大量的小球都落下时,最终在钉板下面不同位置收集到小球.现有5个小球从正上方落下,则恰有3个小球落到2号位置的概率是______.
四、解答题
17.甲 乙两队举行围棋擂台赛,规则如下:两队各出3人,排定1,2,3号.第一局,双方1号队员出场比赛,负的一方淘汰,该队下一号队员上场比赛.当某队3名队员都被淘汰完,比赛结束,未淘汰完的一方获胜.如图表格中,第m行 第n列的数据是甲队第m号队员能战胜乙队第n号队员的概率.
0.5 0.3 0.2
0.6 0.5 0.3
0.8 0.7 0.6
(1)求甲队2号队员把乙队3名队员都淘汰的概率;
(2)比较第三局比赛,甲队队员和乙队队员哪个获胜的概率更大一些?
18.数学兴趣小组设计了一份“你最喜欢的支付方式”的调查问卷(每人必选且只能选一种支付方式),在某商场随机调查了部分顾客,并将统计结果绘制成如下所示的两幅不完整的统计图,请结合图中所给的信息解答下列问题:
(1)将条形统计图补充完整,在扇形统计图中表示“现金”支付的扇形圆心角的度数为多少?
(2)若之前统计遗漏了15份问卷,已知这15份问卷都是采用“支付宝”进行支付,问重新统计后的众数所在的分类与之前统计的情况是否相同,并简要说明理由;
(3)在一次购物中,嘉嘉和琪琪随机从“微信,支付宝,银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.
19.某单位有8名青年志愿者,其中男青年志愿者5人,记为,女青年志愿者3人,记为.现从这8人中选4人参加某项公益活动.
(1)求男青年志愿者或女青年志愿者被选中的概率;
(2)在男青年志愿者被选中的情况下,求女青年志愿者也被选中的概率.
20.某居民小区有两个相互独立的安全防范系统,简称系统A和B,系统A和系统B在任意时刻发生故障的概率分别为和p.
(1)若在任意时刻至少有一个系统不发生故障的概率为,求p的值;
(2)求系统A在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率.
21.进行垃圾分类收集可以减少垃圾处理量和处理设备,降低处理成本,减少土地资源的消耗,具有社会 经济 生态等多方面的效益,是关乎生态文明建设全局的大事.为了普及垃圾分类知识,某学校举行了垃圾分类知识考试,试卷中只有两道题目,已知甲同学答对每题的概率都为,乙同学答对每题的概率都为,且在考试中每人各题答题结果互不影响.已知每题甲,乙同时答对的概率为,恰有一人答对的概率为.
(1)求和的值;
(2)试求两人共答对3道题的概率.
22.某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:
甲分厂产品等级的频数分布表
等级 A B C D
频数 40 20 20 20
乙分厂产品等级的频数分布表
等级 A B C D
频数 28 17 34 21
(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;
(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务
试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.D
【分析】把汽车在三处遇两次绿灯的事件M分拆成三个互斥事件的和,再利用互斥事件、对立事件、相互独立事件的概率公式计算得解.
【详解】汽车在甲、乙、丙三处遇绿灯的事件分别记为A,B,C,则,
汽车在三处遇两次绿灯的事件M,则,且,,互斥,而事件A,B,C相互独立,
则,
所以汽车在这三处共遇到两次绿灯的概率为.
故选:D
2.B
【分析】由题设知甲、乙两队获胜的概率分别为、,甲队要获得冠军,则至少在两局内赢一局,利用概率的乘法和加法公式求概率即可.
【详解】由题意知:每局甲队获胜的概率为,乙队获胜的概率为,
∴至少在两局内甲队赢一局,甲队才能获得冠军,
当第一局甲队获胜,其概率为;
当第一局甲队输,第二局甲队赢,其概率为.
∴甲队获得冠军的概率为.
故选:B.
3.D
【分析】由题意可得甲最终获胜有两种情况:一是前两局甲获胜,二是前两局甲胜一局,第三局甲获胜,然后由独立事件和互斥事件的概率公式求解即可
【详解】由题意可得甲最终获胜有两种情况:一是前两局甲获胜,则获胜的概率为
二是前两局甲胜一局,第三局甲获胜,则获胜的概率为,
而这两种情况是互斥的,所以甲最终获胜的概率为,
故选:D
4.D
【分析】根据的定义,利用分类讨论思想进行分析判定.
【详解】∵任意恒成立,任意恒不成立,∴,故①正确;
对任意事件A,,∴,∴成立,故②正确;
如果,当时,,此时或.若,则,,,成立;时,,,,成立;
当时,,,∴,那么成立,∴③正确;
当时,,此时,, 成立;当时,,此时, 成立,故④正确.
综上,正确的结论有4个,
故选:D
5.C
【分析】由题知使三场比赛结束时,甲获胜,第第三局甲、乙获得的筹数可能为:(5,0),(6,0),(10,0),(10,2),(10,4),(10,5),进而根据独立事件的概率求解即可得答案.
【详解】解:根据题意题,要使三场比赛结束时,甲获胜,第第三局甲、乙获得的筹数可能为:(5,0),(6,0),(10,0),(10,2),(10,4),(10,5),
甲、乙对应的投中情况可能为(散射,未投中),(双耳,未投中),(依杆,未投中),(依杆,有初),(依杆,贯耳),(依杆,散射),
所以甲获胜的概率为: .
故选:C
6.A
【分析】并联而成的四个支路,至少有一个支路正常工作系统就正常工作,求出四个支路都不能正常工作的概率,再利用对立事件的概率公式即可得解.
【详解】设“正常工作”为事件,“正常工作”为事件,则
“与中至少有一个不正常工作”为事件,“与中至少有一个不正常工作”为事件,则,
于是得系统不正常工作的事件为,而,,,相互独立,
所以系统正常工作的概率.
故选:A
7.C
【分析】写出5人取2人的所有事件,找出一男同学一女同学的取法,利用古典概型求解.
【详解】5人小组中,设2男生分别为a,b,3名女生分别为A,B,C,
则任意选出2名同学,共有:10个基本事件,
其中选出的同学中既有男生又有女生共有6个基本事件,
所以,
故选:C
8.C
【分析】根据题意,结合互斥事件,对立事件概念以及概率公式依次讨论各选项即可得答案.
【详解】解:对于A,因为3次抽到的球全是红球为3次抽到的球颜色全相同的一种情况,所以事件与事件不互斥,故错误;
对于B,事件与事件不可能同时发生,但一定有一个会发生,所以事件与事件互为对立事件,故错误;
对于C,因为,所以,故正确;
对于D,因为事件与事件C互斥,,所以,所以,故D错误.
故选:C
9.AC
【分析】根据不同的取值,分别计算对应概率求解.
【详解】当时,,选项A正确;
当时,,选项B错误;
当时,,选项C正确;
当时,,选项D错误.
故选:AC
10.BCD
【分析】A. “A与B互斥”是“A与B相互对立”的必要不充分条件,所以该选项正确;
B. ,所以该选项错误;
C. 举反例说明不一定成立,所以该选项错误;
D. 举反例说明A与B不对立,所以该选项错误.
【详解】解:A. 若A,B为两个事件,“A与B互斥”则“A与B不一定相互对立”; “A与B相互对立”则“A与B互斥”,则“A与B互斥”是“A与B相互对立”的必要不充分条件,所以该选项正确;
B. 若A,B为两个事件,则,所以该选项错误;
C. 若事件A,B,C两两互斥,则不一定成立,如:掷骰子一次,记向上的点数为1,向上的点数为2,向上的点数为3,事件A,B,C两两互斥,则.所以该选项错误;
D. 抛掷一枚均匀的骰子,所得的点数为偶数的概率是,掷一枚硬币,正面向上的概率是,满足,但是A与B不对立,所以该选项错误.
故选:BCD
11.AB
【分析】A中事件“至少出现5点”和“至多出现2点”是互斥事件,所以该选项正确;
B中事件“结果正面向上”的发生与“结果反面向上”是对立事件.所以该选项正确;
C中事件“甲中签”和“乙中签”是互斥事件但不是对立事件.所以该选项错误;
D中三种事件不能构成基本事件,所以该选项错误.
【详解】A中事件“至少出现5点”和“至多出现2点”不可能同时发生,所以是互斥事件,所以该选项正确;
B中事件“结果正面向上”的发生与“结果反面向上”的发生不可能同时出现,所以是互斥事件,但所有结果只有两种,所以事件“结果正面向上"和“结果反面向上”是对立事件.所以该选项正确;
C中事件“甲中签”和“乙中签”是不可能同时发生,但也可能是“甲,乙两人都不中签”发生,所以事件“甲中签”和“乙中签”是互斥事件但不是对立事件.所以该选项错误;
D中设两男为,,两女为,,则“”,“”,“”,“”,“”,“”为等可能事件,可以组成一个基本事件空间,显然“一男一女”包含“”,“”,“”,“”四种情况,不能构成基本事件.所以该选项错误.
故选:AB
12.BD
【分析】A选项在前提下,计算出,,即可判断;B选项在与互斥前提下,计算出,,即可判断;C、D选项在与相互独立前提下,计算出,, ,,即可判断.
【详解】解:A选项:如果,那么,,故A选项错误;
B选项:如果与互斥,那么,,故B选项正确;
C选项:如果与相互独立,那么,,故C选项错误;
D选项:如果与相互独立,那么,,故D选项正确.
故选:BD.
【点睛】本题考查在包含关系,互斥关系,相互独立的前提下的和事件与积事件的概率,是基础题.
13.##0.0475
【分析】设事件表示“甲射击一次命中目标”,事件表示“乙射击一次命中目标”,分两种情况:
①甲、乙第一次射击都未命中,甲第二次射击命中,概率为;②甲、乙第一次射击都未命中,甲第二次射击未命中,乙第二次射击命中,概率为,由此可求得答案.
【详解】解:设事件表示“甲射击一次命中目标”,事件表示“乙射击一次命中目标”,则,相互独立,停止射击时甲射击了两次包括两种情况:
①甲、乙第一次射击都未命中,甲第二次射击命中,
此时的概率为;
②甲、乙第一次射击都未命中,甲第二次射击未命中,乙第二次射击命中,此时的概率为.
故停止射击时,甲射击了两次的概率是.
故答案为:.
14.##0.25
【分析】易得,从而正态分布曲线的对称轴为直线,再利用独立事件的概率求解.
【详解】由题意知,,
∴.
∴正态分布曲线的对称轴为直线.
故,
即每个摄像头在4年内能正常工作的概率为.
∴两个该种品牌的摄像头在4年内都能正常工作的概为.
故答案为:
15.0.686
【分析】根据题意,先求得与至少有一个正常工作的概率,再结合独立事件概率的乘法公式,即可求解.
【详解】由题意,系统正常工作的情况分成两个步骤,A正常工作且B,C至少有一个正常工作的情况,其中正常工作的概率为0.7;正常工作的概率为0.8, 正常工作的概率为0.9,
则与至少有一个正常工作的概率为,
所以这个系统正常工作的概率为:0.7×0.98=0.686;
故答案为:0.686;
【点睛】本题主要考查了对立事件和相互独立事件的概率的计算,其中解答中熟记相互独立事件的概率的计算公式,结合对立事件的概率计算公式求解是的关键,着重考查分析问题和解答问题的能力,属于基础题.
16.
【分析】先研究一个小球从正上方落下的情况,从而可求出一个小球从正上方落下落到2号位置的概率,进而可求出5个小球从正上方落下,则恰有3个小球落到2号位置的概率
【详解】如图所示,先研究一个小球从正上方落下的情况,11,12,13,14指小球第2层到第3层的线路图,以此类推,小球所有的路线情况如下:
01-11-21-31,01-11-21-32,01-11-22-33,01-11-22-34,01-12-23-33,01-12-23-34,01-12-24-35,01-12-24-36,02-14-26-38,02-14-26-37,02-14-25-35,02-14-25-36,02-13-24-36,02-13-24-35,02-13-23-34,02-13-23-33,共16种情况,其中落入2号位置的有4种,
所以每个球落入2号位置的概率为,
所以5个小球从正上方落下,则恰有3个小球落到2号位置的概率为

故答案为:
17.(1);(2)甲队队员获胜的概率更大一些.
【解析】(1)甲队2号队员把乙队3名队员都淘汰这个事件的发生应是甲队1号输给乙队1号,然后甲队2号上场,三场全胜,由独立事件概率公式计算可得;
(2)第三局比赛甲胜可分为3个互斥事件:甲队1号胜乙队3号,甲队2号胜乙队2号,甲队3号胜乙队1号,分别计算概率后相加可得.然后由对立事件概率得出乙队胜的概率,比较后要得结论.
【详解】解:(1)甲队2号队员把乙队3名队员都淘汰的概率为
(2)第3局比赛甲队队员获胜可分为3个互斥事件
(i)甲队1号胜乙队3号,概率为;
(ii)甲队2号胜乙队2号,概率为;
(iii)甲队3号胜乙队1号,概率为
故第3局甲队队员胜的概率为.
则第3局乙队队员胜的概率为
因为,
故甲队队员获胜的概率更大一些.
【点睛】关键点点睛:本题考查相互独立事件的概率公式和互斥事件的概率公式.解题关键是把事件“第3局比赛甲队队员获胜”分斥成3个互斥事件,然后分别求得概率后易得出结论.
18.(1)条形统计图见解析,;(2)不同,理由见解析;(3).
【分析】(1)由两幅图可知,用现金、支付宝、其他支付共有人数110人,所占比例为1-15%-30%=55%,可得共调查了多少人,再根据用银行卡、微信支付的百分比可得答案
(2)根据原数据的众数所在的分类为微信,加上遗漏的15份问卷后,数据的众数所在的分类为微信、支付宝可得答案;
(3)将微信记为A、支付宝记为B、银行卡记为C,画出树状图根据古典概型概率计算公式可得答案.
【详解】(1)由条形统计图可知,用现金、支付宝、其他支付共有人数110人,
所占比例为1-15%-30%=55%,所以共调查了人,
所以用银行卡支付的人有人,用微信支付的人有人,
用现金支付所占比例为,所以,在扇形统计图中表示“现金”支付的扇形圆心角的度数为90°,
补全统计图如图所示:
(2)重新统计后的众数所在的分类与之前统计的情况不同,理由如下:原数据的众数所在的分类为微信,而加上遗漏的15份问卷后,数据的众数所在的分类为微信、支付宝.
(3)将微信记为A、支付宝记为B、银行卡记为C,画树状图如下:
∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,
∴两人恰好选择同一种支付方式的概率为.
19.(1);(2).
【解析】(1)其对立事件是和都没被选中,由对立事件概率公式计算可得.
(2)先求出被选中的概率,再求出都被选中的概率,然后由条件概率公式计算可得.
【详解】(1)设“男青年志愿者和女青年志愿者都不被选中”为事件,则,
所以所求概率为.
(2)记“男青年志愿者被选中”为事件,“女青年志愿者被选中”为事件,
则,
所以.
所以在男青年志愿者被选中的情况下,女青年志愿者也被选中的概率为.
【点睛】方法点睛:本题考查对立事件的概率公式,考查条件概率.在一个事件较为复杂,而其对立事件较简单时,常常先求出对立事件的概率,再由对立事件概率公式计算.
20.(1);
(2)0.972.
【分析】(1)设“至少有一个系统不发生故障”为事件C,根据对立事件的概率,进而求得p的值;
(2)根据独立重复试验概率公式可求得答案.
(1)
解:(1)设“至少有一个系统不发生故障”为事件C,那么,解得.
(2)
解:设“系统A在3次相互独立的检测中不发生故障的次数大于发生故障的次数”为事件D,
则.
21.(1),;(2).
【解析】(1)由互斥事件和对立事件的概率公式列方程组可解得;
(2)分别求出两人答对1道的概率,答对两道题的概率,两人共答对3道题,则是一人答对2道题另一人答对1道题,由互斥事件和独立事件概率公式可得结论.
【详解】解:(1)设{甲同学答对第一题},{乙同学答对第一题},则,.
设{甲、乙二人均答对第一题},{甲、乙二人中恰有一人答对第一题},
则,.
由于二人答题互不影响,且每人各题答题结果互不影响,所以与相互独立,与相互互斥,所以,
.
由题意可得
即解得或
由于,所以,.
(2)设{甲同学答对了道题},{乙同学答对了道题},,1,2.
由题意得,,,
,.
设{甲乙二人共答对3道题},则.
由于和相互独立,与相互互斥,
所以.
所以,甲乙二人共答对3道题的概率为.
【点睛】关键点点睛:本题考查互斥事件与独立事件的概率公式,解题关键是把所求概率事件用互斥事件表示,然后求概率,如设{甲同学答对第一题},{乙同学答对第一题},设{甲、乙二人均答对第一题},{甲、乙二人中恰有一人答对第一题},则,.同样两人共答对3题分拆成甲答对2题乙答对1题与甲答对1题乙答对2题两个互斥事件.
22.(1)甲分厂加工出来的级品的概率为,乙分厂加工出来的级品的概率为;(2)选甲分厂,理由见解析.
【分析】(1)根据两个频数分布表即可求出;
(2)根据题意分别求出甲乙两厂加工件产品的总利润,即可求出平均利润,由此作出选择.
【详解】(1)由表可知,甲厂加工出来的一件产品为级品的概率为,乙厂加工出来的一件产品为级品的概率为;
(2)甲分厂加工件产品的总利润为元,
所以甲分厂加工件产品的平均利润为元每件;
乙分厂加工件产品的总利润为
元,
所以乙分厂加工件产品的平均利润为元每件.
故厂家选择甲分厂承接加工任务.
【点睛】本题主要考查古典概型的概率公式的应用,以及平均数的求法,并根据平均值作出决策,属于基础题.
答案第1页,共2页
答案第1页,共2页