中小学教育资源及组卷应用平台
湘教版2022-2023学年八年级上学期期末练习试题1
姓名:__________班级:__________考号:__________总分__________
1 、选择题
利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为( )
A. B. C. D.
如图,在和中, ,添加一个条件,不能证明和全等的是( )
A. B.
C. D.
如图,△ABC中,∠C=90°,∠A=30°,AB=12,则BC=( )
A.6 B.6 C.6 D.12
为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买( )
A.16个 B.17个 C.33个 D.34个
化简的结果为( )
A. B.a﹣1 C.a D.1
如图.△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△EDC,使点B的对应点D恰好落在AB边上,AC、ED交于点F.若∠BCD=α,则∠EFC的度数是(用含α的代数式表示)( )
A.90°+α B.90°﹣α C.180°﹣α D.α
如图,在中,,根据尺规作图的痕迹,判断以下结论错误的是( )
A. B.
C. D.
设的整数部分为a,小数部分为b,则的值是( )
A.6 B. C.12 D.
在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是( )
A.BC=EC B.EC=BE C.BC=BE D.AE=EC
关于x的分式方程=3的解是正数,则字母m的取值范围是( )
A.m>3 B.m>﹣3 C.m>﹣3 D.m<﹣3
1 、填空题
计算:_____.
代数式有意义时,应满足的条件为______
代数式有意义时,x应满足的条件是______.
如图,在△ABC中,∠B=40°,三角形的 外角∠DAC和∠ACF的平分线交于点E,则∠AEC= _________________度。
如图,在和中,,,,则________ .
如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a、b的代数式表示△ABC的周长为 .
世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有________人进公园,买40张门反而合算.
如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8,点M为AB的中点,若∠CMD=120°,则CD的最大值是 .
1 、解答题
计算:.
解不等式组:,并在数轴上表示其解集.
如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.
先化简,再求值: (1+)÷,其中x=2﹣1.
如图,是的角平分线,在上取点,使.
(1)求证:.
(2)若,,求的度数.
为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.
甲种客车 乙种客车
载客量/(人/辆) 30 42
租金/(元/辆) 300 400
学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.
(1)参加此次研学旅行活动的老师和学生各有多少人?
(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为 辆;
(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.
如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.
(1)求证:BE=CF;
(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.
求证:①ME⊥BC;②DE=DN.
某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:
(1)A,B两种书包每个进价各是多少元?
(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?
(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B种书包各有几个?
答案解析
1 、选择题
【考点】算术平方根
【分析】根据算术平方根的求解方法进行计算即可得解.
解:4的算术平方根,
故选:B.
【点评】本题主要考查了算术平方根的求解方法,考生需要将其与平方根进行对比掌握.
【考点】全等三角形的判定
【分析】根据已知条件和添加条件,结合全等三角形的判断方法即可解答.
解:选项A,添加,
在和中,
,
∴≌(ASA),
选项B,添加,
在和中,,,,无法证明≌;
选项C,添加,
在和中,
,
∴≌(SAS);
选项D,添加,
在和中,
,
∴≌(AAS);
综上,只有选项B符合题意.
故选B.
【点评】本题考查了全等三角形的判定方法,熟知全等三角形的判定方法是解决问题的关键.
【考点】含30度角的直角三角形.
【分析】根据30°所对的直角边等于斜边的一半求解.
解:∵∠C=90°,∠A=30°,AB=12,
∴BC=AB=12×=6,
故答选A.
【点评】本题考查了含30度角的直角三角形性质,注意:在直角三角形中,如果有一个角是30°,那么它所对的直角边等于斜边的一半.
【考点】一元一次不等式的应用.
【分析】设买篮球m个,则买足球(50﹣m)个,根据购买足球和篮球的总费用不超过3000元建立不等式求出其解即可.
解:设买篮球m个,则买足球(50﹣m)个,根据题意得:
80m+50(50﹣m)≤3000,
解得:m≤16,
∵m为整数,
∴m最大取16,
∴最多可以买16个篮球.
故选:A.
【点评】本题考查了列一元一次不等式解实际问题的运用,解答本题时找到建立不等式的不等关系是解答本题的关键.
【考点】分式的加减法.
【分析】根据分式的运算法则即可求出答案.
解:原式=+
=
=a﹣1
故选:B.
【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
【考点】旋转的性质,列代数式.
【分析】由旋转的性质可知,BC=CD,∠B=∠EDC,∠A=∠E,∠ACE=∠BCD,因为∠BCD=α,所以∠B=∠BDC==90°﹣,∠ACE=α,由三角形内角和可得,∠A=90°﹣∠B=.所以∠E=.再由三角形内角和定理可知,∠EFC=180°﹣∠ECF﹣∠E=180°﹣α.
解:由旋转的性质可知,BC=CD,∠B=∠EDC,∠A=∠E,∠ACE=∠BCD,
∵∠BCD=α,
∴∠B=∠BDC==90°﹣,∠ACE=α,
∵∠ACB=90°,
∴∠A=90°﹣∠B=.
∴∠E=.
∴∠EFC=180°﹣∠ECF﹣∠E=180°﹣α.
故选:C.
【点评】本题主要考查旋转的性质,三角形内角和等相关内容,由旋转的性质得出∠E和∠ECF的角度是解题关键.
【考点】尺规作图,全等三角形的性质与判定,直角三角形的性质
【分析】先通过作图过程可得AD平分∠BAC,DE⊥AB,然后证明△ACD≌△AED说明C、D正确,再根据直角三角形的性质说明选项A正确,最后发现只有AE=EB时才符合题意.
解:由题意可得:AD平分∠BAC,DE⊥AB,
在△ACD和△AED中
∠AED=∠C,∠EAD=∠CAD,AD=AD
∴△ACD≌△AED(AAS)
∴DE=DC,AE=AC,即C、D正确;
在Rt△BED中,∠BDE=90°-∠B
在Rt△BED中,∠BAC=90°-∠B
∴∠BDE=∠BAC,即选项A正确;
选项B,只有AE=EB时,才符合题意.
故选B.
【点评】本题主要考查了尺规作图、全等三角形的性质与判定、直角三角形的性质,正确理解尺规作图成为解答本题的关键.
【考点】估算无理数的大小,代数式求值,二次根式的混合运算
【分析】首先根据的整数部分可确定的值,进而确定的值,然后将与的值代入计算即可得到所求代数式的值.
解:∵,
∴,
∴的整数部分,
∴小数部分,
∴.
故选:.
【点评】本题考查了二次根式的运算,正确确定的整数部分与小数部分的值是解题关键.
【考点】等腰三角形的判定;直角三角形的性质
【分析】根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.
解:∵∠ACB=90°,CD⊥AB,
∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,
∴∠BCD=∠A.
∵CE平分∠ACD,
∴∠ACE=∠DCE.
又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,
∴∠BEC=∠BCE,
∴BC=BE.
故选:C.
【点评】本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.
【考点】分式方程的解.
【分析】分式方程去分母转化为整式方程,由分式方程解为正数确定出m的范围即可.
解:分式方程去分母得:2x﹣m=3x+3,
解得:x=﹣m﹣3,
由分式方程的解为正数,得到﹣m﹣3>0,且﹣m﹣3≠﹣1,
解得:m<﹣3,
故选D
【点评】本题考查了分式方程的解,掌握解分式方程的步骤,注意验根是解题的关键.
1 、填空题
【考点】有理数的乘方,算术平方根
【分析】分别进行乘方运算和开根号,相加即可.
解:原式=1+3=4.
故答案为4.
【点评】本题主要考查了实数的运算,准确进行幂的运算是解题的关键.
【考点】分式有意义的条件.
【分析】根据分式有意义,分母等于0列出方程求解即可.
解:由题意得,|x|-1≠0,
解得x≠±1.
故答案为:x≠±1.
【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:
(1)分式无意义 分母为零;
(2)分式有意义 分母不为零;
(3)分式值为零 分子为零且分母不为零.
【考点】二次根式有意义的条件
【分析】直接利用二次根式的定义和分数有意义求出x的取值范围.
解:代数式有意义,可得:,所以,
故答案为:.
【点评】本题考查了二次根式有意义的条件,熟练掌握是解题的关键.
【考点】三角形内角和定理,三角形的外角性质.
【分析】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得
∠DAC+ 1 2∠ACF= (∠B+∠B+∠1+∠2);最 后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.
解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,
∴∠EAC=∠DAC,∠ECA= ∠ACF;
又∵∠B=40°(已知),∠B+∠1+∠2=180°(三角形内角和定理),
∴∠DAC+ ∠ACF= (∠B+∠2)+ (∠B+∠1)= (∠B+∠B+∠1+∠2)=110°(外角定理),
∴∠AEC=180°-( ∠DAC+ ∠ACF)=70°.
故答案为:70°.
【点评】此题主要考查了三角形内角和定理以及角平分线的性质,熟练应用角平分线的性质是解题关键
【考点】全等三角形的判定和性质
【分析】证明△ABC≌△ADC即可.
解:∵,,AC=AC,
∴△ABC≌△ADC,
∴∠D=∠B=130°,
故答案为:130.
【点评】本题考查了全等三角形的判定和性质,掌握判定定理是解题关键.
【考点】等腰三角形的性质;线段垂直平分线的性质.
【分析】由题意可知:AC=AB=a+b,由于DE是线段AC的垂直平分线,∠BAC=36°,所以易证AE=CE=BC=b,从可知△ABC的周长;
解:∵AB=AC,
BE=a,AE=b,
∴AC=AB=a+b,
∵DE是线段AC的垂直平分线,
∴AE=CE=b,
∴∠ECA=∠BAC=36°,
∵∠BAC=36°,
∴∠ABC=∠ACB=72°,
∴∠BCE=∠ACB﹣∠ECA=36°,
∴∠BEC=180°﹣∠ABC﹣∠ECB=72°,
∴CE=BC=b,
∴△ABC的周长为:AB+AC+BC=2a+3b
故答案为:2a+3b.
【点评】本题考查线段垂直平分线的性质,解题的关键是利用等腰三角形的性质以及垂直平分线的性质得出AE=CE=BC,本题属于中等题型.
【考点】一元一次不等式的应用
【分析】先求出购买40张票,优惠后需要多少钱,然后再利用5x>160时,求出买到的张数的取值范围再加上1即可.
解:设x人进公园,
若购满40张票则需要:40×(5-1)=40×4=160(元),
故5x>160时,
解得:x>32,
∴当有32人时,购买32张票和40张票的价格相同,
则再多1人时买40张票较合算;
∴32+1=33(人);
则至少要有33人去世纪公园,买40张票反而合算.
故答案为:33.
【点评】此题主要考查了一元一次不等式的应用,找到按5元的单价付款和4元单价付款的等量关系是解决本题的关键.
【考点】线段的性质:两点之间线段最短,全等三角形的判定与性质,等边三角形的判定与性质,轴对称的性质
【分析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′,证明△A′MB′为等边三角形,即可解决问题.
解:如图,作点A关于CM的对称点A′,点B关于DM的对称点B′.
∵∠CMD=120°,
∴∠AMC+∠DMB=60°,
∴∠CMA′+∠DMB′=60°,
∴∠A′MB′=60°,
∵MA′=MB′,
∴△A′MB′为等边三角形
∵CD≤CA′+A′B′+B′D=CA+AM+BD=2+4+8=14,
∴CD的最大值为14,
故答案为14.
【点评】本题考查翻折变换,等边三角形的判定和性质,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题,属于中考常考题型.
1 、解答题
【考点】分式的混合运算
【分析】先将括号内的式子通分,然后将括号外的除法转化为乘法,再约分即可.
解:
.
【点评】本题考查分式的混合运算,解答本题的关键是明确异分母分式减法和分式除法的运算法则和运算顺序.
【考点】解一元一次不等式组,在数轴上表示不等式的解集.
【分析】先求出不等式的解集,求出不等式组的解集即可.
解:由不等式3x<6,解得:x<2,
由不等式5x+4>3x+2,解得:x>﹣1,
∴不等式组的解集为:﹣1<x<2,
∴在数轴上表示不等式组的解集为:
【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.
【考点】全等三角形的判定与性质.
【分析】首先由BE=CF可以得到BC=EF,然后利用边边边证明△ABC≌△DEF,最后利用全等三角形的性质和平行线的判定即可解决问题.
证明:∵AB∥CD,
∴∠ABC=∠DEF,
又∵BE=CF,
∴BE+EC=CF+EC,
即:BC=EF,
在△ABC和△DEF中
∴△ABC≌△DEF(SAS),
∴∠ACB=∠DFE,
∴AC∥DF.
【点评】本题主要考查了全等三角形的性质与判定,同时也考查了平行线的判定,解题的关键是证明△ABC≌△DEF,此题有一点的综合性,难度不大.
【考点】分式的化简求值
【分析】直接分解因式,再利用分式的混合运算法则计算得出答案.
解: (1+)÷
=
=,
把x=2﹣1代入得,原式===.
【点评】此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.
【考点】角平分线的定义,等腰三角形的性质,平行线的判定与性质
【分析】(1)直接利用角平分线的定义和等边对等角求出,即可完成求证;
(2)先求出∠ADE,再利用平行线的性质求出∠ ABC,最后利用角平分线的定义即可完成求解.
解:(1)平分,
.
,
,
,
.
(2),,
.
.
.
平分,
,
即.
【点评】本题综合考查了角平分线的定义、等腰三角形的性质、平行线的判定与性质等内容,解决本题的关键是牢记概念与性质,本题的解题思路较明显,属于几何中的基础题型,着重考查了学生对基本概念的理解与掌握.
【考点】二元一次方程的应用;一元一次不等式的应用
【分析】(1)设出老师有x名,学生有y名,得出二元一次方程组,解出即可;
(2)根据汽车总数不能小于=(取整为8)辆,即可求出;
(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,由题意得出400x+300(8﹣x)≤3100,得出x取值范围,分析得出即可.
解:(1)设老师有x名,学生有y名.
依题意,列方程组为,
解之得:,
答:老师有16名,学生有284名;
(2)∵每辆客车上至少要有2名老师,
∴汽车总数不能大于8辆;
又要保证300名师生有车坐,汽车总数不能小于=(取整为8)辆,
综合起来可知汽车总数为8辆;
故答案为:8;
(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,
∵车总费用不超过3100元,
∴400x+300(8﹣x)≤3100,
解得:x≤7,
为使300名师生都有座,
∴42x+30(8﹣x)≥300,
解得:x≥5,
∴5≤x≤7(x为整数),
∴共有3种租车方案:
方案一:租用甲种客车3辆,乙种客车5辆,租车费用为2900元;
方案二:租用甲种客车2辆,乙种客车6辆,租车费用为3000元;
方案三:租用甲种客车1辆,乙种客车7辆,租车费用为3100元;
故最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.
【点评】此题主要考查了二元一次方程组的应用与一次不等式的综合应用,由题意得出租用x辆甲种客车与租车费用的不等式关系是解决问题的关键.
【考点】全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线的性质
【分析】(1)通过角的转换和等腰直角三角形的性质,得到∠BAE=∠CAF和∠B=∠FCA,从而ASA证明△ABF≌△ACF,根据全等三角形对应边相等得到结论.
(2)①过E点作EG⊥AB于点G,通过证明EG是BM的垂直平分线就易得出结论.
②通过证明Rt△AMC≌Rt△EMC和△ADE≌△CDN来证明结论.
证明:(1)∵∠BAC=90°,AB=AC,
∴∠B=∠ACB=45°,
∵FC⊥BC,
∴∠BCF=90°,
∴∠ACF=90°﹣45°=45°,
∴∠B=∠ACF,
∵∠BAC=90°,FA⊥AE,
∴∠BAE+∠CAE=90°,
∠CAF+∠CAE=90°,
∴∠BAE=∠CAF,
在△ABE和△ACF中,
,
∴△ABE≌△ACF(ASA),
∴BE=CF;
(2)①如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,
∴HE=BH,∠BEH=45°,
∵AE平分∠BAD,AD⊥BC,
∴DE=HE,
∴DE=BH=HE,
∵BM=2DE,
∴HE=HM,
∴△HEM是等腰直角三角形,
∴∠MEH=45°,
∴∠BEM=45°+45°=90°,
∴ME⊥BC;
②由题意得,∠CAE=45°+×45°=67.5°,
∴∠CEA=180°﹣45°﹣67.5°=67.5°,
∴∠CAE=∠CEA=67.5°,
∴AC=CE,
在Rt△ACM和Rt△ECM中
,,
∴Rt△ACM≌Rt△ECM(HL),
∴∠ACM=∠ECM=×45°=22.5°,
又∵∠DAE=×45°=22.5°,
∴∠DAE=∠ECM,
∵∠BAC=90°,AB=AC,AD⊥BC,
∴AD=CD=BC,
在△ADE和△CDN中,
,
∴△ADE≌△CDN(ASA),
∴DE=DN.
【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线构造出等腰直角三角形和全等三角形是解题的关键,难点在于最后一问根据角的度数得到相等的角.
【考点】分式方程的应用,一元一次不等式的应用,二元一次方程的应用
【分析】(1)设A种书包每个进价是x元,根据题意列出方程,求解即可;
(2)设购进A种书包m个,根据题意得出不等式70m+90(2m+5)≤5450,求出m,再结合A种书包不少于18个,得出m的取值范围,从而可得方案;
(3)根据获利最大得到购进A种书包20个,则B种书包45个,设赠送的书包中,A种书包s个,样品中有t个A种书包,则B种书包5-s个,样品中有4-t个B种书包,根据获利1370元得到方程,再求出符合题意的整数解即可.
解:(1)设A种书包每个进价是x元,则B种书包每个进价是x+20元,
由题意可得:,
解得:x=70,
经检验:x=70是原方程的解,
70+20=90元,
∴A,B两种书包每个进价各是70元和90元;
(2)设购进A种书包m个,则B种书包2m+5个,m≥18,
根据题意得:70m+90(2m+5)≤5450,
解得:m≤20,
则18≤m≤20,
∴共有3种方案:
购进A种书包18个,则B种书包41个;
购进A种书包19个,则B种书包43个;
购进A种书包20个,则B种书包45个;
(3)设获利W元,
则W=(90-70)m+(130-90)(2m+5)=100m+200,
∵100>0,
∴W随m的增大而增大,
则当m=20时,W最大,
则购进A种书包20个,则B种书包45个,
设赠送的书包中,A种书包s个,样品中有t个A种书包,
则B种书包5-s个,样品中有4-t个B种书包,
则此时W=(20-s-t)×(90-70)+t(90×0.5-70)+(45-5+s-4+t)×(130-90)+(4-t)(130×0.5-90)-70s-(5-s)×90=1370,
整理得:2s+t=4,即,
根据题意可得两种书包都需要有样品,则t≠0且t≠4,
∴t=2,s=1,
∴赠送的书包中,A种书包有1个,B种书包有3个,
样品中A种书包有2个,B种书包有2个.
【点评】本题考查了分式方程,一元一次不等式,二元一次方程的实际应用,难度较大,解题时务必理解题意,得到相应的等量关系和不等关系.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)