第15讲 二次函数与一元二次方程
一、知识梳理
二次函数与一元二次方程的关系
抛物线y=ax2+bx+c与x轴的交点个数 判别式Δ=b2-4ac的符号 方程ax2+bx+c=0有实根的个数
2个 Δ>0 两个________实根
1个 Δ=0 两个________实根
没有 Δ<0 ________实根
二次函数y=ax2+bx+c(a≠0)的图象特征与a、b、c及判别式b2-4ac的符号之间的关系
字母的符号 图象的特征
a a>0 开口向上
a<0 开口向下
b b=0 对称轴为y轴
ab>0(b与a同号) 对称轴在y轴左侧
ab<0(b与a异号) 对称轴在y轴右侧
c c=0 经过原点
c>0 与y轴正半轴相交
c<0 与y轴负半轴相交
b2-4ac b2-4ac=0 与x轴有惟一交点(顶点)
b2-4ac>0 与x轴有两个不同交点
b2-4ac<0 与x轴没有交点
特殊关系 当x=1时,y=a+b+c当x=-1时,y=a-b+c若a+b+c>0,即x=1时,y>0若a-b+c>0,即x=-1时,y>0
二次函数图象的平移
将抛物线y=ax2+bx+c(a≠0)用配方法化成y=a(x-h)2+k(a≠0)的形式,而任意抛物线y=a(x-h)2+k均可由抛物线y=ax2平移得到,具体平移方法如图
二、题型、技巧归纳
考点1二次函数与一元二次方程
例1 抛物线y=x2-4x+m与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是________.
技巧归纳:一元二次方程ax2+bx+c=0的两个根为x1,x2 ,则抛物线 y=ax2+bx+c与x轴的交点坐标是(x1,0),(x2,0)
考点2二次函数的图象的平移
例2 将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是( )
A.y=(x+2)2+2 B.y=(x+2)2-2
C.y=(x-2)2+2 D.y=(x-2)2-2
技巧归纳:
1.采用由“点”带“形”的方法.图形在平移时,图形上的每一个点都按照相同的方向移动相同的距离,抛物线的平移问题往往可转化为顶点的平移问题来解决.
2.平移的变化规律可为:
(1)上、下平移:当抛物线y=a(x-h)2+k向上平移m(m>0)个单位后,所得的抛物线的关系式为y=a(x-h)2+k+m;当抛物线y=a(x-h)2+k向下平移m(m>0)个单位后,所得的抛物线的关系式为y=a(x-h)2+k-m.
(2)左、右平移:当抛物线y=a(x-h)2+k向左平移n(n>0)个单位后,所得的抛物线的关系式为y=a(x-h+n)2+k;当抛物线y=a(x-h)2+k向右平移n(n>0)个单位后,所得的抛物线的关系式为y=a(x-h-n)2+k.
例3 如图把抛物线y=0.5x2平移得到抛物线m. 抛物线m经过点A(-6,0)和原点(0,0),它的顶点为P,它的对称轴与抛物线y=0.5x2交于点Q,则图中阴影部分的面积为________.
考点3二次函数的图象特征与a,b,c之间的关系
例4 已知二次函数y=ax2+bx+c(a≠0)的图象如图15-4所示, 对称轴x= .下列结论中,正确的是( )
A.abc>0 B.a+b=0
C.2b+c>0 D.4a+c<2b
技巧归纳:二次函数的图象特征主要从开口方向、与x轴有无交点,与y轴的交点及对称轴的位置,确定a,b,c及b2-4ac的符号,有时也可把x的值代入,根据图象确定y的符号.
考点4二次函数的图象与性质的综合运用
例5如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3.
(1)求该抛物线所对应的函数关系式;
(2)求△ABD的面积;
(3)将三角形AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.
技巧归纳:
(1)二次函数的图象是抛物线,是轴对称图形,充分利用抛物线的轴对称性,是研究利用二次函数的性质解决问题的关键.
(2)已知二次函数图象上几个点的坐标,一般用待定系数法直接列方程(组)求二次函数的解析式.
(3)已知二次函数图象上的点(除顶点外)和对称轴,便能确定与此点关于对称轴对称的另一点的坐标.
三、随堂检测
1.不与x轴相交的抛物线是( )
A.y=2x2 – 3 B.y= - 2 x2 + 3
C.y= - x2 – 2x D.y=-2(x+1)2 - 3
2.如果关于x的一元二次方程 x2-2x+m=0有两个相等的实数根,则m=__,此时抛物线 y=x2-2x+m与x轴有_ 个交点.
3.已知抛物线 y=x2 – 8x +c的顶点在 x轴上,则c=__.
4.抛物线y=x2-3x+2 与y轴交于点____,与x轴交于点___ _.
5.抛物线y=2x2-3x-5 与y轴交于点____ ,与x轴交于点 .
6.一元二次方程 3 x2+x-10=0的两个根是x1= -2 ,x2=5/3, 那么二次函数y= 3 x2+x-10与x轴的交点坐标是_____.
7.已知二次函数y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0的解是 .
8.若抛物线y=ax2+bx+c,当 a>0,c<0时,图象与x轴交点情况是( )
A.无交点 B.只有一个交点
C.有两个交点 D.不能确定
参考答案
例1、(3,0)
例2、B
例3、
例4、D.
例5、解:(1)∵四边形OCEF为矩形,OF=2,EF=3,
∴点C的坐标为(0,3),点E的坐标为(2,3).
把x=0,y=3;x=2,y=3分别代入y=-x2+bx+c中,
得,解得,
∴抛物线所对应的函数解析式为y=-x2+2x+3;
(2)∵y=-x2+2x+3=-(x-1)2+4,
∴抛物线的顶点坐标为D(1,4),
∴△ABD中AB边的高为4,
令y=0,得-x2+2x+3=0,
解得x1=-1,x2=3,
所以AB=3-(-1)=4,
∴△ABD的面积=×4×4=8;
(3)△AOC绕点C逆时针旋转90°,CO落在CE所在的直线上,
由(2)可知OA=1,
∴点A对应点G的坐标为(3,2),
当x=3时,y=-32+2×3+3=0≠2,
所以点G不在该抛物线上.
随堂检测
1、 D
2、 1,1
3、 16
4、 (0,2 ) (1,0)(2,0)
5、 (0,5) ( , 0 ) (-1,0)
6、 (-2,0)( , 0)
PAGE第15讲:二次函数与一元二次方程
一、夯实基础
1.抛物线y=-3x2-x+4与坐标轴的交点个数是( )
A.3 B.2 C.1 D.0
2.(苏州中考)已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是( )
A.x1=1,x2=-1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3
3.(柳州中考)小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax+b=0的解是( )
A.无解 B.x=1 C.x=-4 D.x=-1或x=4
4.抛物线y=2x2+8x+m与x轴只有一个公共点,则m的值为___
5.根据下列表格的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)一个解的范围是( )
A.3<x<3.23 B.3.23<x<3.24 C.3.24<x<3.25 D.3.25<x<3.26
6、下列哪一个函数,其图象与x轴有两个交点( )
A.y=(x-23)2+155 B.y=(x+23)2+155
C.y=-(x-23)2-155 D.y=-(x+23)2+155
二、能力提升
7.二次函数y=x2-x-2的图象如图所示,则函数值y<0时x的取值范围是( )
A.x<-1 B.x>2 C.-1<x<2 D.x<-1或x>2
8.(黔东南中考)已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2 014的值为( )
A.2 012 B.2 013 C.2 014 D.2 015
9.(牡丹江中考)抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c>0的解集是( )
A.x<2 B.x>-3 C.-3<x<1 D.x<-3或x>1
10.(锦州中考)二次函数y=ax2+bx+c(a≠0,a,b,c为常数)的图象如图所示,ax2+bx+c=m有实数根的条件是( )
A.m≤-2 B.m≥-2 C.m≥0 D.m>4
11.(济南中考)二次函数y=x2+bx的图象如图,对称轴为直线x=1.若关于x的一元二次方程x2+bx-t=0(t为实数)在-1<x<4的范围内有解,则t的取值范围是( )
A.t≥-1 B.-1≤t<3 C.-1≤t<8 D.3<t<8
三、课外拓展
12.(济宁中考)“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m
A.m13.抛物线y=2(x+3)(x-2)与x轴的交点坐标分别为___.
四、中考链接
14.(南京中考)已知二次函数y=x2-2mx+m2+3(m是常数).
(1)求证:不论m为何值,该函数的图象与x轴没有公共点;
(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?
15.(孝感中考)已知关于x的方程x2-(2k-3)x+k2+1=0有两个不相等的实数根x1、x2.
(1)求k的取值范围;
(2)试说明x1<0,x2<0;
(3)若抛物线y=x2-(2k-3)x+k2+1与x轴交于A、B两点,点A、点B到原点的距离分别为OA、OB,且OA+OB=2OA·OB-3,求k的值.
参考答案
一、夯实基础
1.A
2.B
3.D
4.8.
5.C
6.D
二、能力提升
7.C
8.D
9.C
10.B
11.C
12.A
13.(-3,0),(2,0).
三、课外拓展
12.A
13.(-3,0),(2,0).
四、中考链接
14.(1)∵(-2m)2-4(m2+3)=-12<0,
∴方程x2-2mx+m2+3=0没有实数根.
∴不论m为何值,该函数的图象与x轴没有公共点.
(2)y=x2-2mx+m2+3=(x-m)2+3,
把函数y=(x-m)2+3的图象沿y轴向下平移3个单位长度后,得到函数y=(x-m)2的图象,它的顶点坐标是(m,0),
∴这个函数的图象与x轴只有一个公共点.
∴把该函数的图象沿y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.
15.(1)由题意可知:
Δ=[-(2k-3)]2-4(k2+1)>0,
即-12k+5>0,∴k<.
(2)∵k<,∴x1+x2=2k-3<0,
x1·x2=k2+1>0.
∴x1<0,x2<0.
(3)依题意,不妨设A(x1,0),B(x2,0),
∵x1<0,x2<0,
∴OA+OB=(-x1)·(-x2)=x1x2=k2+1.
∵OA+OB=2OA·OB-3,
∴-(2k-3)=2(k2+1)-3.
解得k1=1,k2=-2.
∵k<,∴k=-2.
PAGE第15讲: 二次函数与一元二次方程
一、复习目标
1、理解二次函数与一元二次方程之间的关系;会判断a、b、c的符号.
2、会结合方程根的性质、一元二次方程根的判别式,判定抛物线与x轴的交点情况;
3、会利用韦达定理解决有关二次函数的问题
二、课时安排1课时
三、复习重难点
1、会结合方程根的性质、一元二次方程根的判别式,判定抛物线与x轴的交点情况;
2、灵活运用二次函数与一元二次方程之间的关系解决实际问题
四、教学过程
(一)知识梳理
二次函数与一元二次方程的关系
抛物线y=ax2+bx+c与x轴的交点个数 判别式Δ=b2-4ac的符号 方程ax2+bx+c=0有实根的个数
2个 Δ>0 两个________实根
1个 Δ=0 两个________实根
没有 Δ<0 ________实根
二次函数y=ax2+bx+c(a≠0)的图象特征与a、b、c及判别式b2-4ac的符号之间的关系
字母的符号 图象的特征
a a>0 开口向上
a<0 开口向下
b b=0 对称轴为y轴
ab>0(b与a同号) 对称轴在y轴左侧
ab<0(b与a异号) 对称轴在y轴右侧
c c=0 经过原点
c>0 与y轴正半轴相交
c<0 与y轴负半轴相交
b2-4ac b2-4ac=0 与x轴有惟一交点(顶点)
b2-4ac>0 与x轴有两个不同交点
b2-4ac<0 与x轴没有交点
特殊关系 当x=1时,y=a+b+c当x=-1时,y=a-b+c若a+b+c>0,即x=1时,y>0若a-b+c>0,即x=-1时,y>0
二次函数图象的平移
将抛物线y=ax2+bx+c(a≠0)用配方法化成y=a(x-h)2+k(a≠0)的形式,而任意抛物线y=a(x-h)2+k均可由抛物线y=ax2平移得到,具体平移方法如图
(二)题型、技巧归纳
考点1二次函数与一元二次方程
技巧归纳:一元二次方程ax2+bx+c=0的两个根为x1,x2 ,则抛物线 y=ax2+bx+c与x轴的交点坐标是(x1,0),(x2,0)
考点2二次函数的图象的平移
技巧归纳:
1.采用由“点”带“形”的方法.图形在平移时,图形上的每一个点都按照相同的方向移动相同的距离,抛物线的平移问题往往可转化为顶点的平移问题来解决.
2.平移的变化规律可为:
(1)上、下平移:当抛物线y=a(x-h)2+k向上平移m(m>0)个单位后,所得的抛物线的关系式为y=a(x-h)2+k+m;当抛物线y=a(x-h)2+k向下平移m(m>0)个单位后,所得的抛物线的关系式为y=a(x-h)2+k-m.
(2)左、右平移:当抛物线y=a(x-h)2+k向左平移n(n>0)个单位后,所得的抛物线的关系式为y=a(x-h+n)2+k;当抛物线y=a(x-h)2+k向右平移n(n>0)个单位后,所得的抛物线的关系式为y=a(x-h-n)2+k.
考点3二次函数的图象特征与a,b,c之间的关系
技巧归纳:二次函数的图象特征主要从开口方向、与x轴有无交点,与y轴的交点及对称轴的位置,确定a,b,c及b2-4ac的符号,有时也可把x的值代入,根据图象确定y的符号.
考点4二次函数的图象与性质的综合运用
技巧归纳:
(1)二次函数的图象是抛物线,是轴对称图形,充分利用抛物线的轴对称性,是研究利用二次函数的性质解决问题的关键.
(2)已知二次函数图象上几个点的坐标,一般用待定系数法直接列方程(组)求二次函数的解析式.
(3)已知二次函数图象上的点(除顶点外)和对称轴,便能确定与此点关于对称轴对称的另一点的坐标.
(三)典例精讲
例1 抛物线y=x2-4x+m与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是________.
[解析] 把(1,0)代入y=x2-4x+m中,得m=3,
所以原方程为y=x2-4x+3,
令y=0,解方程x2-4x+3=0,得x1=1,x2=3,
∴抛物线与x轴的另一个交点的坐标是(3,0).
例2 将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是( )
A.y=(x+2)2+2 B.y=(x+2)2-2
C.y=(x-2)2+2 D.y=(x-2)2-2
[解析] 抛物线y=x2+1的顶点为(0,1),将点(0,1)先向左平移2个单位,再向下平移3个单位所得到的点的坐标为(-2,-2),所以平移后抛物线的关系式为y=(x+2)2-2.故选B.
例3 如图把抛物线y=0.5x2平移得到抛物线m. 抛物线m经过点A(-6,0)和原点(0,0),它的顶点为P,它的对称轴与抛物线y=0.5x2交于点Q,则图中阴影部分的面积为________.
[解析] 过点P作PM⊥y轴于点M.
∵抛物线平移后经过原点O和点A(-6,0),∴平移后的抛物线的对称轴为直线x=-3,得出二次函数的关系式为:y=(x+3)2+h,
将(-6,0)代入,得0=(-6+3)2+h,解得h=-,
∴点P的坐标是,根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO的面积,∴S=3×=.
例4 已知二次函数y=ax2+bx+c(a≠0)的图象如图15-4所示, 对称轴x= .下列结论中,正确的是( )
A.abc>0 B.a+b=0
C.2b+c>0 D.4a+c<2b
[解析] A项,∵开口向上,∴a>0.∵与y轴交于负半轴,∴c<0.∵对称轴在y轴左侧,∴-<0,∴b>0,∴abc<0,故本选项错误;B项,∵对称轴x=-=-,∴a=b,故本选项错误;C项,当x=1时,a+b+c=2b+c<0,故本选项错误;D项,∵对称轴为直线x=-,图象与x轴的一个交点的横坐标x1的取值范围为x1>1,∴与x轴的另一个交点的横坐标x2的取值范围为x2<-2,
∴当x=-2时,4a-2b+c<0,即4a+c<2b,故本选项正确.
故选D.
例5如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3.
(1)求该抛物线所对应的函数关系式;
(2)求△ABD的面积;
(3)将三角形AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.
解:(1)∵四边形OCEF为矩形,OF=2,EF=3,
∴点C的坐标为(0,3),点E的坐标为(2,3).
把x=0,y=3;x=2,y=3分别代入y=-x2+bx+c中,
得,解得,
∴抛物线所对应的函数解析式为y=-x2+2x+3;
(2)∵y=-x2+2x+3=-(x-1)2+4,
∴抛物线的顶点坐标为D(1,4),
∴△ABD中AB边的高为4,
令y=0,得-x2+2x+3=0,
解得x1=-1,x2=3,
所以AB=3-(-1)=4,
∴△ABD的面积=×4×4=8;
(3)△AOC绕点C逆时针旋转90°,CO落在CE所在的直线上,
由(2)可知OA=1,
∴点A对应点G的坐标为(3,2),
当x=3时,y=-32+2×3+3=0≠2,
所以点G不在该抛物线上.
(四)归纳小结
本部分内容要求熟练掌握二次函数与一元二次方程之间的关系;会判断a、b、c的符号,会结合方程根的性质、一元二次方程根的判别式,判定抛物线与x轴的交点情况; 会利用韦达定理解决有关二次函数的问题。
(五)随堂检测
1.不与x轴相交的抛物线是( )
A.y=2x2 – 3 B.y= - 2 x2 + 3
C.y= - x2 – 2x D.y=-2(x+1)2 - 3
2.如果关于x的一元二次方程 x2-2x+m=0有两个相等的实数根,则m=__,此时抛物线 y=x2-2x+m与x轴有_ 个交点.
3.已知抛物线 y=x2 – 8x +c的顶点在 x轴上,则c=__.
4.抛物线y=x2-3x+2 与y轴交于点____,与x轴交于点___ _.
5.抛物线y=2x2-3x-5 与y轴交于点____ ,与x轴交于点 .
6.一元二次方程 3 x2+x-10=0的两个根是x1= -2 ,x2=5/3, 那么二次函数y= 3 x2+x-10与x轴的交点坐标是_____.
7.已知二次函数y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0的解是 .
8.若抛物线y=ax2+bx+c,当 a>0,c<0时,图象与x轴交点情况是( )
A.无交点 B.只有一个交点
C.有两个交点 D.不能确定
五、板书设计
一般式
六、作业布置
二次函数与一元二次方程课时作业
七、教学反思
借助多媒体形式,使同学们能直观感受本模块内容,以促进学生对所学知识的充分理解与掌握。采用启发、诱思、讲解和讨论相结合的方法使学生充分掌握知识。进行多种题型的训练,使同学们能灵活运用本节重点知识。
PAGE