26.2 等可能情形下的概率计算(2) 课件(共25张PPT)

文档属性

名称 26.2 等可能情形下的概率计算(2) 课件(共25张PPT)
格式 ppt
文件大小 2.0MB
资源类型 试卷
版本资源 沪科版
科目 数学
更新时间 2022-12-21 17:56:20

图片预览

文档简介

(共25张PPT)
沪科版 九年级下册
26.2等可能情形下的概率计算(2)
本课是在学生已经学习了用直接列举的方法求概率
的基础上,进一步研究用列表法求简单随机事件的概率.
课件说明
教学目标: 用列举法(列表法)求简单随机事件的概率.
教学重点: 用列表法求简单随机事件的概率.
  回答下列问题,并说明理由.   (1)掷一枚硬币,正面向上的概率是____;   (2)袋子中装有 5 个红球,3 个绿球,这些球除了颜色外都相同,从袋子中随机摸出一个球,它是红色的概率为____.  
1
2
5
8
复习旧知
  在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫列举法.
学习新知
  方法一:将两枚硬币分别记做 A、B,于是
可以直接列举得到:
∴ P(两枚正面向上)=  .
(A正,
B正),
(A正,
B反),
(A反,
B正),
(A反,
B反)
四种等可能的结果.
   例2 同时抛掷2枚质地均匀的硬币一次,求2枚硬币都是正面向上概率.
∵每种结果出现的可能性相等,其中2枚硬币都是正面朝上的结果有1种,
例题解析
1
4
  方法二:将同时掷两枚硬币,想象为先掷一枚,再掷一枚,分步思考:在第一枚为正面的情况下第二枚硬币有正、反两种情况,同理第一枚为反面的情况下第二枚硬币有正、反两种情况.
  两枚硬币分别记为第 1 枚和第 2 枚,可以用下表列举出所有可能出现的结果.
正 反


第 1 枚
第 2 枚
由此表可以看出,同时抛掷2枚硬币,可能出现的结果有 4 个.
列表法
(正,
正)
(反,
反)
(正,
正)
反)
(反,
方法二:
∴ P(两枚正面向上)=  .
∵每种结果出现的可能性相等,其中2枚硬币都是正面朝上的结果有1种,
1
4
开始
所有可能出现的结果
第二枚
第一枚
画树状图法
方法三:
由树状图看出,同时抛掷2枚硬币,可能出现的结果有 4 种. 每种结果出现的可能性相等,其中2枚硬币都是正面朝上的结果有1种.
∴ P(A)=  .
1
4
利用直接列举(把事件可能出现的结果一一列出)、列表(用表格列出事件可能出现的结果)、画树状图(按事件发生的次序,列出事件可能出现的结果)的方法求出共出现的结果n和A事件出现的结果m,再用公式 求出A事件的概率的方法,称为列举法.
P(A)=  .
m
n
学习新知
开始
男1
男2
女2

女′
女″
获演唱奖的
获演奏奖的
解:设两名领奖学生都是女生的事件为A,两种奖项
各任选1人的结果用“树状图”来表示.         
例3 某班有1名男生、2名女生在校文艺演出获演唱奖,
另有2名男生、2名女生获演奏奖.从获演唱奖和演奏奖的学
生中各任选1人去领奖,求两人都是女生的概率.
女1
男1
男2
女2
女1
男1
男2
女2
女1
开始
男1
男2
女1
女2
男1
男2
女1
女2
男1
男2
女1
女2

女′
女″
获演唱奖的
获演奏奖的
由于共有12种结果,且每种结果出现的可能性相等,其中2名都是女生的结果有4种,所以事件A发生的概率为
解:设两名领奖学生都是女生的事件为A,两种奖项各
任选1人的结果用“树状图”来表示.
        
开始
P(A)= 
=  .
4
12
1
3
  例4 同时掷2枚质地均匀的骰子,骰子各面上的点数分别是1,2, … ,6,试分别计算如下各随机事件的概率:   (1)两枚骰子的点数相同;   (2)两枚骰子点数的和是 8;   (3)至少有一枚骰子的点数为 2.
1 2 3 4 5 6
1
2
3
4
5
6
  解:两枚骰子分别记为第 1 枚和第 2 枚,可以用下表列举出所有可能的结果.
第1枚
第2枚
(1,
1)
(1,
(1,
(1,
(1,
(1,
1)
3)
4)
5)
6)
(2,
2)
  解:两枚骰子分别记为第 1 枚和第 2 枚,可以用下 表列举出所有可能的结果.
1 2 3 4 5 6
1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)
3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
第1枚
第2枚
  可以看出,同时掷两枚骰子,可能出现的结果有 36 种,并且它们出现的可能性相等.
1 2 3 4 5 6
1 (2,1) (3,1) (4,1) (5,1) (6,1)
2 (1,2) (3,2) (4,2) (5,2) (6,2)
3 (1,3) (2,3) (4,3) (5,3) (6,3)
4 (1,4) (2,4) (3,4) (5,4) (6,4)
5 (1,5) (2,5) (3,5) (4,5) (6,5)
6 (1,6) (2,6) (3,6) (4,6) (5,6)
第1枚
第2枚
  (1)两枚骰子点数相同(记为事件 A)的结果有 种,
即(1,1),(2,2),(3,3),(4,4), (5,5),(6,6) 6种.
∴ P(A)=  =  .
(1,1)
(2,2)
(3,3)
(4,4)
(5,5)
(6,6)
6
36
1
6
6
1 2 3 4 5 6
1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
2 (1,2) (2,2) (3,2) (4,2) (5,2)
3 (1,3) (2,3) (3,3) (4,3)
4 (1,4) (2,4) (3,4) (6,4)
5 (1,5) (2,5) (5,5) (6,5)
6 (1,6) (4,6) (5,6) (6,6)
第1枚
第2枚
  (2)两枚骰子点数之和是 8(记为事件 B)的结果有 种,
∴ P(B)=  .
5
36
5
(3,6)
(4,5)
(5,4)
(6,3)
即(2,6),(3,5), (4,4),(5,3),(6,2).
(2,6)
(3,5)
(4,4)
(5,3)
(6,2)
1 2 3 4 5 6
1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)
3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
  (3)至少有一枚骰子的点数是 2(记为事件 C)的
结果有 种.
∴ P(C)=  .
第1枚
第2枚
11
36
11
  (1)用列举法求概率应该注意哪些问题?   (2)列表法适用于解决哪类概率求解问题?
使用列表法有哪些注意事项?
课堂小结
1.将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌面上.随机地抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?恰好是“32”的概率是多少?数字之和等于5的概率是多少?
解:用“树状图”来表示能组成的两位数的所有结果.         
开始
十位数
1
2
3
个位数
2
3
1
3
1
2
结果共有6种,恰好是“32”结果有1种,
∴ P(32)=  .
1
6
1.将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌面上.随机地抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?恰好是“32”的概率是多少?数字之和等于5的概率是多少?
解:用“树状图”来表示能组成的两位数的所有结果.         
开始
十位数
1
2
3
个位数
2
3
1
3
1
2
结果共有6种,数字之和是5结果有2种,
∴ P(5)= 
= 
2
6
1
3
2.如图,两个圆盘的指针落在每一个数字代表的扇形上的可能性相等,求两个圆盆的指针同时落在偶数所代表的扇形上的概率.
解:所有可能的结果是如下表所示:        
结果共有25种,其中都是偶数的结果有6种,
∴ P(偶数)=  .
6
25
6 7 8 9 10
1 (1,6) (1,7) (1,8) (1,9) (1,10)
2 (2,6) (2,7) (2,8) (2,9) (2,10)
3 (3,6) (3,7) (3,8) (3,9) (3,10)
4 (4,6) (4,7) (4,8) (4,9) (4,10)
5 (5,6) (5,7) (5,8) (5,9) (5,10)
在一个不透明的袋子中有一个黑球a和两个白球b,c(除颜色外其他均相同).用树状图(或列表法)解答下列
问题:
(1)小丽第一次从袋子中摸出一个球不放回,第二次又从袋子中摸出一个球,则小丽两次都摸到白球的概率是多少?
(2)小强第一次从袋子中摸出一个球,摸到黑球不放回,摸到白球放回;第二次又从袋子中摸出一个球,则小强两次都摸到白球的概率是多少?
练习巩固
今天作业
课本P102页第3题
谢谢
21世纪教育网(www.21cnjy.com)
中小学教育资源网站
兼职招聘:
https://www.21cnjy.com/recruitment/home/admin