(共26张PPT)
新课标 北师大版
九年级下册
2.4.2二次函数的应用(第2课时)
第二章
二次函数
学习目标
1.经历探索销售中最大利润等问题的过程,体会二次函数是求最优化问题的数学模型,并感受数学的应用价值.
2.能够分析和表示实际问题中变量之间的二次函数关系,并运用次二次函数的知识求出实际问题的最大(小)值。
情境导入
在日常生活中存在着许许多多的与数学知识有关的实际问题.商品买卖过程中,作为商家追求利润最大化是永恒的追求.
如果你是商场经理,如何定价才能使商场获得最大利润呢?
探究新知
核心知识点一:
如何定价利润最大
服装厂生产某品牌的T恤衫成本
是每件10元.根据市场调查,以单价
13元批发给经销商,经销商愿意经销
5 000件,并且表示单价每降价0.1元,
愿意多经销500件.
请你帮助分析,厂家批发单价是多少时可以获利最多?
探究新知
利用二次函数解决实际生活中的利润问题,一般运
用“总利润=每件商品所获利润×销售件数”或“总利
润=总售价-总成本”建立利润与销售单价之间的二
次函数关系式,求其图象的顶点坐标,获取最值.
探究新知
设批发单价为x元(0≤ x≤13元),那么
销售量可表示为 : 件;
销售额可表示为: 元;
所获利润可表示为: 元;
5000+5000(13-x)=70000-5000x
x(70000-5000x)=70000x-5000x2
(70000x-5000x2)-10(70000-5000x)
=-5000x2+120000x-700000
探究新知
当销售单价为 元时,可以获得最大利润,最大利润是 元.
y=-5000x2+120000x-700000
=-5000(x- 12)2+20000.
∵-5000<0
∴抛物线有最高点,函数有最大值.
12
20000
探究新知
例2.某旅社有客房120间,每间房的日租金为160元时, 每天都客满,经市场调查发现,如果每间客房的日租金每增加10元时,那么客房每天出租数会减少6间.不考虑其他因素,旅社将每间客房的日租
金提高到多少元时,客房日租金的
总收入最高?
探究新知
分 析:相等关系是客房日租金的总收入=每间客房日租金×每天客房出租数
若设每间客房的日租金提高x个10元(即10X元),则:
每天客房出租数会减少6x间,
客房日租金的总收入为y元,则:
探究新知
解:设每间客房的日租金提高10x元,则每天客房出租数会
减少6x间.设客房日租金总收入为 y元,
则 y = (160+10x) (120-6x)= -60 (x-2)2+ 19 440.
∵x≥0,且120-6x>0,∴0≤x< 20.
当x=2时,y最大= 19 440.
这时每间客房的日租金为160 +10×2=180 (元).
因此,每间客房的日租金提高到180元时,客房总收人
最高,最高收入为 19 440 元.
探究新知
归纳总结
(1)建立利润与价格之间的函数关系式:
运用“总利润=总售价-总成本”或“总利润=单件利润×销售量”
(2)结合实际意义,确定自变量的取值范围,
(3)在自变量的取值范围内确定最大利润:运用公式法或通过配方法求出二次函数的最大值或最小值.
用二次函数解决最值问题的一般步骤:
探究新知
议一议:某果园有100棵橙子树,平均每棵树结600个橙子、现准备多种一些橙子树以提高果园产量、但是如果多种树,那么树之间的距离和每棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.若假设果园增种x棵橙子树,橙子总产量为y个.
(1)利用函数图象描述橙子的总产量与增种橙子树的棵树之间的关系.
(2)增种多少棵橙子树,可以使橙子的总产量在60400以上?
探究新知
解:(1)依题意可得:y= -5x2+100x+60000
1、列表
2、描点;
3、连线
探究新知
(2)由表格和图象观察可知:当6≤x≤14 时,可以使橙子总产量超过60400个.
通过绘制图形可以直观看到,果园的树木棵数并不是越多越好,产量的多少取决于科学的计算果树的棵数.
探究新知
归纳总结
上述问题的思考,我们可以发现在解决一些二次函数的实际问题时,绘制出图形对于问题的解决至关重要。所以,大家再利用二次函数的知识解决实际问题时,要注意“数形结合”思想的运用。
随堂练习
1.服装店将进价为100元/件的服装按x元/件出售,每天可销售(200-x)件,若想获得最大利润,则x应定为( )
A.150 B.160
C.170 D.180
A
随堂练习
2.某旅行社在五一期间接团去外地旅游,经计算,收益
y(元)与旅行团人数x(人)满足表达式y=-x2+100x+
28 400,要使收益最大,则此旅行团应有( )
A.30人 B.40人
C.50人 D.55人
C
随堂练习
3.某旅店有100张床位,每床每晚收费10元时,床位可全部租出.若每床每晚收费每提高2元,则租出的床位减少10张.以每次提高2元的这种方法变化下去,该旅店为投资最少而获利最大,每床每晚收费应提高( )
A.4元或6元 B.4元 C.6元 D.8元
C
随堂练习
4.将进货价为70元/件的某种商品按零售价100元/件出售时每天能卖出20件,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1件,为了获得最大利润,决定降价x元,则单件的利润为______元,每日的销售量为_______件,则每日的利润y(元)关于x(元)的函数关系式是y=___________
(不要求写自变量的取值范围),所以每件降价___元时,每日获得的最大利润为____元.
(30-x)
(20+x)
-x2+10x+600
5
625
随堂练习
5.每年六、七月份某市荔枝大量上市,今年某水果商以5元/kg的价格购进一批荔枝进行销售,运输过程中质量损耗5%,运输费用是0.7元/kg,假设不计其他费用.(1)水果商要把荔枝售价至少定为 才不会亏本;
(2)在销售过程中,水果商发现每天荔枝的销售量m(kg)与销售单价x(元/kg)之间满足关系:m=-10x+120,那么当销售单价定为 时,每天获得的利润w最大.
6元
9元
随堂练习
6.一工艺师生产的某种产品按质量分为9个档次.第1档次(最低档次)的产品一天能生产80件,每件可获利润12元.产品每提高一个档次,每件产品的利润增加2元,但一天产量减少4件.如果只从生产利润这一角度考虑,他生产哪个档次的产品,可获得最大利润?
随堂练习
解:设生产x档次的产品时,每天所获得的利润为w元,
则
w=[12+2(x-1)][80-4(x-1)]
=(10+2x)(84-4x)
=-8x2+128x+840
=-8(x-8)2+1352.
当x=8时,w有最大值,且w最大=1352.
答:该工艺师生产第8档次产品,可使利润最大,
最大利润为1352.
随堂练习
7.某商店试销一种新商品,新商品的进价为30元/件,经过一段时间的试销发现,每月的销售量会因售价的调整而不同.令每月销售量为y件,售价为x元/件,每月的总利润为Q元.
(1)当售价在40~50元时,每月销售量都为60件,则此时每月的总利润最多是多少元?
解:由题意得:当40≤x≤50时,
Q = 60(x-30)= 60x-1800
∵ y = 60 > 0,Q随x的增大而增大
∴当x最大= 50时,Q最大= 1200
答:此时每月的总利润最多是1200元.
随堂练习
(2)当售价在50~70元时,每月销售量与售价的关系如图所示,则此时当该商品售价x是多少元时,该商店每月获利最大,最大利润是多少元?
解:当50≤x≤70时,
设y与x函数关系式为y=kx+b,
∵线段过(50,60)和(70,20).
50k+b=60
70k+b=20
∴
∴y =-2x +160(50≤x≤70)
解得:
k =-2
b = 160
课堂小结
最大利润问题
建立函数关系式
总利润=单件利润×销售量或总利润=总售价-总成本.
确定自变量取值范围
涨价:要保证销售量≥0;
降件:要保证单件利润≥0.
确定最大利润
利用配方法或公式求最大值或利用函数简图和性质求出.
谢 谢 ~