【寒假备课精选】2013-2014下学期高中物理同步配套辅导与检测(粤教版,必修2):第三章 第二节 万有引力定律的应用(43张ppt)

文档属性

名称 【寒假备课精选】2013-2014下学期高中物理同步配套辅导与检测(粤教版,必修2):第三章 第二节 万有引力定律的应用(43张ppt)
格式 zip
文件大小 851.6KB
资源类型 教案
版本资源 广东版
科目 物理
更新时间 2014-01-24 21:59:45

图片预览

文档简介

课件43张PPT。第二节 万有引力定律的应用一、计算天体的质量
1.基本思路:行星绕太阳、卫星绕行星做匀速圆周运动的向心力是它们间的________提供.测量出环绕________和环绕半径r.
2.公式:G =mω2r=________,可得中心天体的质量M=__________. 万有引力  周期T4π2r3/GT2二、发现未知天体
1.被人们称为“笔尖下发现的行星”被命名为________.
2.海王星的发现和________的“按时回归”确立了万有引力定律的地位,也成为科学史上的美谈.海王星哈雷彗星三、人造卫星
1.牛顿的设想:如图所示,当________________________足够大时,物体将会围绕________旋转而不再落回地面,成为一颗绕地球转动的________.水平抛出物体的速度地球卫星万有引力mω2r四、三种宇宙速度最小7.911.2地球最小16.7一、天体质量和密度的计算
1.求天体质量的思路.
绕中心天体运动的其他天体或卫星做匀速圆周运动,做圆周运动的天体(或卫星)的向心力等于它与中心天体的万有引力,利用此关系建立方程求中心天体的质量.2.计算天体的质量.
下面以地球质量的计算为例,介绍几种计算天体质量的方法:
(1)若已知地球的半径R和地球表面的重力加速度g,根据物体的重力近似等于地球对物体的引力,得mg=GM地·mR2,解得地球质量为=R2gG. 地M(2)质量为m的卫星绕地球做匀速圆周运动二、人造卫星的特点
1.卫星绕地球的轨道.
(1)若是椭圆轨道,地心是椭圆的一个焦点,其运动遵循开普勒定律.
(2)若是圆轨道,卫星所需的向心力由地球对它的万有引力提供,由于万有引力指向地心,所以卫星圆轨道的圆心必然是地心,即卫星绕地心做匀速圆周运动. (3)轨道平面:卫星的轨道平面可以跟赤道平面重合,也可以跟赤道平面垂直,也可以跟赤道平面成任意角度.轨道平面一定过地心,如下图.3.地球同步卫星.
(1)周期、角速度与地球自转周期、角速度相同,T=24 h.
(2)轨道是确定的,地球同步卫星的运行轨道在赤道平面内.
(3)在赤道上空距地面高度有确定的值.
由万有引力提供向心力得三、发射速度、运行速度与宇宙速度的区别
1.发射速度:是指被发射物在离开发射装置时的初速度,要发射一颗人造地球卫星,发射速度不能小于第一宇宙速度.
若发射速度大于7.9 km/s,而小于11.2 km/s,卫星将环绕地球做椭圆轨道运动.若发射速度大于等于11.2 km/s而小于16.7 km/s,卫星将环绕太阳运动.若发射速度大于等于16.7 km/s,卫星将飞出太阳系.2.运行速度:是指卫星在进入运行轨道后绕地球做匀速圆周运动的线速度,当卫星“贴着”地面运行时,运行速度等于第一宇宙速度,根据v= 可知,人造卫星距地面越高(即r越大),运行速度越小.
3.宇宙速度:三个宇宙速度分别是指发射的卫星成为近地卫星、脱离地球引力和脱离太阳引力所需要的最小地面发射速度.4.第一宇宙速度的推导.
设地球质量为M,卫星质量为m,卫星到地心的距离为r,卫星做匀速圆周运动的线速度为v,根据万有引力定律和牛顿第二定律得:
应用近地条件r≈R(R为地球半径),取R=6 400 km,M=6×1024 kg,则:v= =7.9 km/s.
第一宇宙速度的另一种推导:
在地面附近,万有引力近似等于重力,此力提供卫星做匀速圆周运动的向心力.(地球半径R、地面重力加速度g已知)( km/s).什么是抛体运动假设在半径为R的某天体上发射一颗该天体的卫星,若它贴近该天体的表面做匀速圆周运动的周期为T1,已知万有引力常量为G,则该天体的密度是多少?若这颗卫星距该天体表面的高度为h,测得在该处做圆周运动的周期为T2,则该天体的密度又是多少?思维总结:(1)模型建立.
求解天体质量问题时,通常把卫星绕天体的运动视为匀速圆周运动,而万有引力就是卫星做匀速圆周运动时所需的向心力,当然根据题中的条件,也可以根据重力加速度求天体质量. (2)把万有引力定律和牛顿第二定律以及圆周运动的知识结合寻求求解天体质量所需要的已知量,即人造卫星问题 (2012年广东高考) (双选)如右图所示,飞船从轨道1变轨至轨道2.若飞船在两轨道上都做匀速圆周运动,不考虑质量变化,相对于在轨道1上,飞船在轨道2上的(  )
A.动能大
B.向心加速度大
C.运行周期长
D.角速度小变式训练1.(双选)据报道,我国数据中继卫星“天链一号01星”于2008年4月25日在西昌卫星发射中心发射升空,经过4次变轨控制后,于5月1日成功定点在东经77°赤道上空的同步轨道.关于成功定点后的“天链一号01星”,下列说法正确的是(  )
A.运行速度大于7.9 km/s
B.离地面高度一定,相对地面静止
C.绕地球运行的角速度比月球绕地球运行的角速度大
D.向心加速度与静止在赤道上物体的向心加速度大小相等解析:由题中描述知“天链一号01星”是地球同步卫星,所以它的运行速度小于7.9 km/s,离地高度一定,相对地面静止.由于其运行半径比月球绕地球运行半径小,由ω = 得其运行的角速度比月球绕地球运行的角速度大.由于受力情况不同,由公式a=rω2知向心加速度与静止在赤道上物体的向心加速度大小不相等.
答案:BC第一宇宙速度 我国于2010年10月1日成功发射了一颗绕月运行的探月卫星“嫦娥2号”.设该卫星的轨道是圆形的,且贴近月球表面.已知月球的质量约为地球质量的 ,月球的半径约为地球半径的 ,地球上的第一宇宙速度约为7.9 km/s,则该探月卫星绕月运行的速率约为(  )
A.0.4 km/s      B.1.8 km/s
C.11 km/s D.36 km/s变式训练2.(双选)关于地球的第一宇宙速度,下列说法中正确的是(  )
A.它是人造地球卫星绕地球运行的最小速度
B.它是近地圆形轨道上人造地球卫星的运行速度
C.它是能使卫星进入近地轨道的最小速度
D.它是能使卫星进入轨道的最大发射速度BC基础达标1.(多选)已知引力常量G,要计算地球的质量,还必须已知某些数据,现在给出以下各组数据,可以计算出地球质量的有(  )
A.地球绕太阳运行的周期T和地球离太阳中心的距离R
B.月球绕地球运行的周期T和月球离地球中心的距离R
C.人造地球卫星在地面附近运行的速度v和运行周期T
D.地球半径R和地球同步卫星的BC2.(双选)下列说法正确的是(  )
A.海王星是人们依据万有引力定律计算出其轨道而发现的
B.天王星是人们依据万有引力定律计算出其轨道而发现的
C.天王星运行轨道偏离根据万有引力定律计算出来的轨道,其原因是由于天王星受到轨道外的其他行星的万有引力作用
D.以上均不正确AC3.人造卫星环绕地球运转的速率v= ,其中g为地面处的重力加速度,R为地球半径,r为卫星离地球中心的距离.下列说法正确的是(  )
A.从公式可见,环绕速度与轨道半径的平方根成反比
B.从公式可见,把人造卫星发射到越远的地方越容易
C.上面环绕速度的表达式是错误的
D.以上说法都错误A 4.(双选)已知地球的质量为M,月球的质量为m,月球绕地球运行的轨道半径为r,周期为T,万有引力常量为G,则月球绕地球运转轨道处的重力加速度大小等于 (  )5.下列关于地球同步通信卫星的说法中,正确的是(  )
A.为避免通信卫星在轨道上相撞,应使它们运行在不同的轨道上
B.通信卫星定点在地球上空某处,各个通信卫星的角速度相同,但线速度大小可以不同
C.不同国家发射通信卫星的地点不同,这些卫星轨道不一定在同一平面内
D.通信卫星只能运行在赤道上空某一恒定高度上能力提升6.(2013·深圳二模)(双选)北斗系列卫星定点于地球同步轨道,它们与近地卫星比较( )?
? A. 北斗卫星的线速度较大?
?B. 北斗卫星的周期较大?
?C. 北斗卫星的角速度较大?
?D. 北斗卫星的向心加速度较小? 解析:北斗卫星的轨道半径比近地卫星大,则北斗卫星的线速度、角速度、向心加速度都比近地卫星小,只有周期大,正确答案是B和D.
答案:BD7.(双选)一颗质量为m的卫星绕质量为M的行星做匀速圆周运动,则卫星的周期(  )
A.与卫星的质量无关
B.与卫星的运行角速度成正比
C.与行星质量M的平方根成正比
D.与卫星轨道半径的 次方有关AD8.关于绕地球做匀速圆周运动的人造地球卫星,以下判断正确的是(  )
A.同一轨道上,质量大的卫星线速度大
B.同一轨道上,质量大的卫星向心加速度大
C.离地面越近的卫星线速度越大
D.离地面越远的卫星线速度越大9.探测器绕月球做匀速圆周运动,变轨后在周期较小的轨道上仍做匀速圆周运动,则变轨后与变轨前相比(  )
A.轨道半径变小 B.向心加速度变小
C.角速度变小 D.线速度变小感谢您的使用,退出请按ESC键本小节结束