高中数学必修1导学案(共计104页)

文档属性

名称 高中数学必修1导学案(共计104页)
格式 zip
文件大小 2.1MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2014-02-03 09:46:55

图片预览

文档简介

1.1.1 集合的含义及其表示方法(1)
一、课前预习新知
(一)、预习目标:
初步理解集合的含义,了解属于关系的意义,知道常用数集及其记法
(二)、预习内容:
阅读教材填空:
1 、集合:一般地,把一些能够 对象看成一个整体,就说这个整体是由这些对象的全体构成的 (或 )。构成集合的每个对象叫做这个集合的
(或 )。
2、集合与元素的表示:集合通常用 来表示,它们的元素通常用 来表示。
3、元素与集合的关系:
如果a是集合A的元素,就说 ,记作 ,读作 。
如果a不是集合A的元素,就说 ,记作 ,读作 。
4.常用的数集及其记号:
(1)自然数集: ,记作 。
(2)正整数集: ,记作 。
(3)整 数 集: ,记作 。
(4)有理数集: ,记作 。
(5)实 数 集: ,记作 。
二、课内探究新知
(一)、学习目标
1.通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择集合不同的语言形式描述具体的问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.
2.了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识.
学习重点:集合的基本概念与表示方法.
学习难点:选择恰当的方法表示一些简单的集合.
(二)、学习过程
1、 核对预习学案中的答案
2、 思考下列问题
①请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?”
②下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊?
③其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢 请你给出集合的含义.
④如果用A表示高一(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b是高一(4)班的一位同学,那么a、b与集合A分别有什么关系 由此看见元素与集合之间有什么关系?
⑤世界上最高的山能不能构成一个集合?
⑥世界上的高山能不能构成一个集合?
⑦问题⑥说明集合中的元素具有什么性质?
⑧由实数1、2、3、1组成的集合有几个元素?
⑨问题⑧说明集合中的元素具有什么性质?
⑩由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?
3、集合元素的三要素是 、 、 。
4、例题
例题1.下列各组对象不能组成集合的是( )
A.大于6的所有整数 B.高中数学的所有难题
C.被3除余2的所有整数 D.函数y=图象上所有的点
变式训练1
1.下列条件能形成集合的是( )
A.充分小的负数全体 B.爱好足球的人
C.中国的富翁 D.某公司的全体员工
例题2.下列结论中,不正确的是( )
A.若a∈N,则-aN B.若a∈Z,则a2∈Z
C.若a∈Q,则|a|∈Q D.若a∈R,则
变式训练2判断下面说法是否正确、正确的在( )内填“√”,错误的填“×”
(1)所有在N中的元素都在N*中( )
(2)所有在N中的元素都在Z中( )
(3)所有不在N*中的数都不在Z中( )
(4)所有不在Q中的实数都在R中( )
(5)由既在R中又在N*中的数组成的集合中一定包含数0( )
(6)不在N中的数不能使方程4x=8成立( )
5、 课堂小结
三、当堂检测
1、你能否确定,你所在班级中,高个子同学构成的集合?并说明理由。
你能否确定,你所在班级中,最高的3位同学构成的集合?
2、
(1) -3 N; (2)3.14 Q; (3) Q; (4)0 Φ ;
(5) Q; (6) R; (7)1 N+; (8) R。
课后练习巩固新知
1.下列对象能否组成集合:
(1)数组1、3、5、7;
(2)到两定点距离的和等于两定点间距离的点;
(3)满足3x-2>x+3的全体实数;
(4)所有直角三角形;
(5)美国NBA的著名篮球明星;
(6)所有绝对值等于6的数;
(7)所有绝对值小于3的整数;
(8)中国男子足球队中技术很差的队员;
(9)参加2008年奥运会的中国代表团成员.
2.(口答)说出下面集合中的元素:
(1){大于3小于11的偶数};
(2){平方等于1的数};
(3){15的正约数}.
3.用符号∈或填空:
(1)1______N,0______N,-3______N,0.5______N,______N;
(2)1______Z,0______Z,-3______Z,0.5______Z,______Z;
(3)1______Q,0______Q,-3______Q,0.5______Q,______Q;
(4)1______R,0______R,-3______R,0.5______R,______R.
4.判断正误:
(1)所有属于N的元素都属于N*. ( )
(2)所有属于N的元素都属于Z. ( )
(3)所有不属于N*的数都不属于Z. ( )
(4)所有不属于Q的实数都属于R. ( )
(5)不属于N的数不能使方程4x=8成立. ( )
集合的含义及其表示方法(2)
课前预习学案
一、预习目标:
1、会用列举法表示简单的结合。2、明确描述法表示集合的
二、预习内容:
阅读教材表示下列集合:
(1)小于10的所有自然数组成的集合;
(2)方程x2=x的所有实数根组成的集合;
(3)由1~20以内的所有质数组成的集合
课内探究学案
一、【学习目标】
1、集合和元素的表示法;
2、掌握一些常用的数集及其记法
3、掌握集合两种表示法:列举法、描述法。
学习重难点:集合的两种表示法:列举法和描述法。
二、学习过程
1 、核对预习学案中的答案
2、 列举法的基本格式是
描述法的基本格式是
3、例题
例题1、..用列举法表示下列集合:
(1)、小于5的正奇数组成的集合;
(2)、能被3整除且大于4小于15的自然数组成的集合;
(3)、方程x2-9=0的解组成的集合;
(4)、{15以内的质数};
(5)、{x|∈Z,x∈Z}.
变式训练1
用列举法表示下列集合:
(1)x2-4的一次因式组成的集合;
(2){y|y=-x2-2x+3,x∈R,y∈N};
(3)方程x2+6x+9=0的解集;
(4){20以内的质数};
(5){(x,y)|x2+y2=1,x∈Z,y∈Z};
(6){大于0小于3的整数};
(7){x∈R|x2+5x-14=0};
(8){(x,y)|x∈N且1≤x<4,y-2x=0};
(9){(x,y)|x+y=6,x∈N,y∈N}.
例题2.用描述法分别表示下列集合:
(1)二次函数y=x2图象上的点组成的集合;
(2)数轴上离原点的距离大于6的点组成的集合;
(3)不等式x-7<3的解集.
变式训练2用描述法表示下列集合:
(1)方程2x+y=5的解集;
(2)小于10的所有非负整数的集合;
(3)方程ax+by=0(ab≠0)的解;
(4)数轴上离开原点的距离大于3的点的集合;
(5)平面直角坐标系中第Ⅱ、Ⅳ象限点的集合;
(6)方程组的解的集合;
(7){1,3,5,7,…};
(8)x轴上所有点的集合;
(9)非负偶数;
(10)能被3整除的整数.
三、当堂检测
课本P5练习1、2.
课后练习与提高
1.下列集合表示法正确的是(  )
A.{1,2,2,3}
B.{全体实数}
C.{有理数}
D.不等式x2-5>0的解集为{x2-5>0}
2.用列举法表示下列集合
①是的约数_______;
②________________________;
③________;
④数字和为的两位数________;
⑤___________________________;
3.用列举法和描述法分别表示方程x2-5x+6=0的解集
4.集合{x∈N|-1<x<4}用列举法表示为 .
2集合间的基本关系
课前预习学案
一、预习目标:
初步理解子集的含义,能说明集合的基本关系。
二、预习内容:
阅读教材第7页中的相关内容,并思考回答下例问题:
(1)集合A是集合B的真子集的含义是什么 什么叫空集
(2)集合A是集合B的真子集与集合A是集合B的子集之间有什么区别
(3)0,{0}与三者之间有什么关系
(4)包含关系与属于关系正义有什么区别 试结合实例作出解释.
(5)空集是任何集合的子集吗 空集是任何集合的真子集吗
(6)能否说任何一人集合是它本身的子集,即
(7)对于集合A,B,C,D,如果AB,BC,那么集合A与C有什么关系
课内探究学案
一、学习目标
(1)了解集合之间包含与相等的含义,能识别给定集合的子集。
(2)理解子集.真子集的概念。
(3)能使用图表达集合间的关系,体会直观图示对理解抽象概念的作用.
学习重点:集合间的包含与相等关系,子集与其子集的概念.
学习难点:难点是属于关系与包含关系的区别.
二、学习过程
1、 思考下列问题
问题l:实数有相等.大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?
问题2:观察下面几个例子,你能发现两个集合间有什么关系了吗?
(1);
(2)设A为某中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;
(3)设
(4).
问题3:与实数中的结论“若”相类比,在集合中,你能得出什么结论
你对上面3个问题的结论是
2、例题
例题1..某工厂生产的产品在质量和长度上都合格时,该产品才合格。若用A表示合格产品,B表示质量合格的产品的集合,C表示长度合格的产品的集合.则下列包含关系哪些成立?
试用Venn图表示这三个集合的关系。.
变式训练1用适当的符号()填空:
①4 ②11
③ ④
例题2.写出集合{a,b}的所有子集,并指出哪些是它的真子集.
变式训练2写出集合{0,1,2}的所有子集,并指出哪些是它的真子集.
5 课堂小结
三、当堂检测
(1)讨论下列集合的包含关系
①A={本年天阴的日子},B={本年天下雨的日子};
②A={-2,-1,0,1,2,3},B={-1,0,1}。
(2)写出集合A={1,2,3}的所有非空真子集和非空子集
课后练习与提高
1用连接下列集合对:
①A={济南人},B={山东人};
②A=N,B=R;
③A={1,2,3,4},B={0,1,2,3,4,5};
④A={本校田径队队员},B={本校长跑队队员};
⑤A={11月份的公休日},B={11月份的星期六或星期天}
2若A={,,},则有几个子集,几个真子集?写出A所有的子集。
3设A={3,Z},B={6,Z},则A、B之间是什么关系?
1.1.3集合的基本运算(并集、交集)导学案
课前预习学案
一、预习目标:了解交集、并集的概念及其性质,并会计算一些简单集合的交集并集。
二、预习内容:1、交集:一般地,由所有属于A又属于B的元素所组成的集合,叫做A,B的 .记作 ,即
2、并集: 一般地,对于给定的两个集合A,B把它们所有的元素并在一起所组成的集合,叫做A,B的 .记作 ,即
3、用韦恩图表示两个集合的交集与并集。
提出疑惑
同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中
疑惑点 疑惑内容
课内探究学案
(一)学习目标:
1、熟练掌握交集、并集的概念及其性质。
2、注意用数轴、韦恩图来解决交集、并集问题。
3、体会数学语言的简洁性与明确性,发展运用数学语言交流问题的能力。
学习重难点:会求两个集合的交集与并集。
(二)自主学习
1.设A={x|x是等腰三角形},B={x|x是直角三角形},求A∩B.
2.设A={x|x是锐角三角形},B={x|x是钝角三角形},求A∪B.
(三)合作探究:思考交集与并集的性质有哪些?
(四)精讲精练
例1、已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N为( )
A.x=3,y=-1 B.(3,-1)
C.{3,-1} D.{(3,-1)}
变式训练1:已知集合M={x|x+y=2},N={y|y= x2},那么M∩N为
例2.设A={x|-1变式训练2:已知A={x|x2-px+15=0},B={x|x2-ax-b=0},且A∪B={2,3,5},A∩B={3},求p,a,b的值。
三、课后练习与提高
1、选择题
 (1)设M={0,1,2,4,5,7},N={1,4,6,8,9},P={4,7,9},则(M∩N)∪(M∩P)=(      )
  A.{1,4}  B.{1,7}   C.{4,7}   D.{1,4,7}
  (2)已知A={y|y=x2-4x+3,x∈R},B={y|y=x-1,x∈R},则A∩B=(    )
A.{y|y=-1或0}            B.{x|x=0或1}
C.{(0,-1),(1,0)}          D.{y|y≥-1}
  (3)已知集合M={x|x-=0},N={x|x-1=0},若M∩N=M,则实数=(    )
  A.1      B.-1     C.1或-1     D.1或-1或0
2、填空题
(4).若集合A、B满足A∪B=A∩B,则集合A,B的关系是_________________________________.
(5)设,,则=________。
3、解答题
(6).已知关于x的方程3x2+px-7=0的解集为A,方程3x2-7x+q=0的解集为B,若A∩B={-},求A∪B.
参考答案
⒈D[解析]由条件知,M∩N={1,4},M∩P={4,7},故选D
⒉D[解析]集合A中y=x2-4x+3=(x-2)2-1≥-1,集合B中y=x-1∈R,
  ∴AB,∴A∩B=A.故选D.
1.1.3集合的基本运算(全集、补集)导学案
课前预习学案
一、预习目标:了解全集、补集的概念及其性质,并会计算一些简单集合的补集。
二、预习内容:
⒈如果所要研究的集合________________________________,那么称这个给定的集合为全集,记作_____.
⒉如果A是全集U的一个子集,由_______________________________构成的集合,叫做A在U中的补集,记作________,读作_________.
⒊A∪CUA=_______,A∩CUA=________,CU(CUA)=_______
提出疑惑
同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标:
1、了解全集的意义,理解补集的概念.
2、能用韦恩图表达集合的关系及运算,体会直观图示对理解抽象概念的作用
3、进一步体会数学语言的简洁性与明确性,发展运用数学语言交流问题的能力。
学习重难点:会求两个集合的交集与并集。
二、自主学习
⒈设全集U={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则(CUA)∪(CUB)=(     )
 A.{0}   B.{0,1}  C.{0,1,4}  D.{0,1,2,3,4}
⒉已知集合I={0,-1,-2,-3,-4},集合M={0,-1,-2},N={0,-3,-4},则M∩(CIN)=(      )
 A.{0}    B.{-3,-4} C.{-1,-2}    D.
⒊已知全集为U,M、N是U的非空子集,若MN,则CUM与CUN的关系是_____________________.
三、合作探究:思考全集与补集的性质有哪些?
四、精讲精练
例⒈设U={2,4,3-2},P={2,2+2-},CUP={-1},求.
解:
变式训练一:已知A={0,2,4,6},CSA={-1,-3,1,3},CSB={-1,0,2},用列举法写出集合B.
解:
例⒉设全集U=R,A={x|3m-1<x<2m},B={x|-1<x<3},BCUA,求m的取值范围.
解:
变式训练二:设全集U={1,2,3,4},且A={x|x2-mx+n=0,x∈U},若CUA={2,3},求m,n的值.
三、课后练习与提高
1、选择题
 (1)已知CZA={x∈Z|x>5},CZB={x∈Z|x>2},则有(      )
  A.AB     B.BA    C.A=B      D.以上都不对
 (2)设,,,则=( )
A.   B.
C. D.
(3)设全集U={2,3,2+2-3},A={|+1|,2},CUA={5},则的值为(     )
  A.2或-4      B.2        C.-3或1      D.4
2、填空题
(4)设U=R,A={},CUA={x|x>4或x<3},则=________,=_________.
(5)设U=R,A={x|x2-x-2=0},B={x||x|=y+1,y∈A},则CUB=______________.
3、解答题
(6)已知全集S={不大于20的质数},A、B是S的两个子集,且满足A∩(CSB)={3,5},(CSA)∩B={7, 19},(CSA)∩(CSB)={2,17},求集合A和集合B.
 
 
 
 
 
 
1.2.1函数的概念导学案
课前预习学案
一、预习目标:了解函数的概念,并会计算一些简单函数的定义域。
二、预习内容:
⒈在一个变化的过程中,有两个变量x和y,如果给定了一个x值,相应地_____________________________,那么我们称__________的函数,其中x是_________,y是________.
⒉记集合A是一个______________,对A内_________x,按照确定的法则f,都有_________________与它对应,则这种对应关系叫做____________________,记作_________________,其中x叫做_______,数集A叫做______________________________.
⒊如果自变量取值,则由法则f确定的值y称为_________________________,记作________或______,所有函数值构成的集合_____________________,叫做_________________.
提出疑惑
同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中
疑惑点 疑惑内容
课内探究学案
(一)学习目标:
1、通过丰富的实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型
2、学习用集合语言刻画函数
3、理解构成函数的要素,会求一些简单函数的定义域并能够正确使用“区间”的符号表示某些函数的定义域。
4、使学生懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。
学习重难点:体会函数是描述变量之间的依赖关系的重要数学模型,正确理解函数的概念
(二)合作探究:
1.用集合语言刻画函数关键词语有哪些?
2.明确函数的三要素:定义域、值域、解析式
(三)精讲精练
例1:求函数y=的定义域。
解:
变式训练一:求函数y=的定义域;
解:
例⒉求函数f(x)=,x∈R,在x=0,1,2处的函数值和值域.
解:
变式训练二:已知A={1,2,3,k},B={4,7,4,2+3},∈N+,k∈N+,x∈A,y∈B,f:x→y=3x+1是从定义域A到值域B上的一个函数,
求,k,A,B.
解:
课后练习与提高
一、选择题
  ⒈函数的定义域是(    )
  A.{}             C.{}  
  B.{}              D.{} 
⒉已知函数f(x)=x+1,其定义域为{-1,0,1,2},则函数的值域为(     )
 A.[0,3]   B.{0,3}   C.{0,1,2,3}  D.{y|y≥0}
⒊已知f(x)=x2+1,则f[f(-1)]的值等于(      )
  A.2         B.3         C.4          D.5
二、填空题
4.函数的定义域是_______________________
5.已知f(x)=2x+3,则f(1)=_________________,f(a)=______________,
f[f(a)]=______________________.
三、解答题
6. 用长为的铁丝弯成下部为矩形,上部为半圆形的框架,若矩形底边长为2x,求此框架围成的面积y与x的函数关系式,并指出其定义域.
1.2.1 函数的概念
第二课时 函数概念的应用
课前预习学案
一 、预习目标
1.通过预习熟知函数的概念
2.了解函数定义域及值域的概念
二 、预习内容
1.函数的概念:设A、B是__________,如果按照某个确定的对应关系f,使对于集合A中的_______数x,在集合B中都有__________的数f(x)和它对应,那么就称_______为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的_______;与x的值相对应的y值叫做函数值,函数值的集合_________叫做函数的值域.值域是集合B的______。
注意:①如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;② 函数的定义域、值域要写成_________的形式.
定义域补充:能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母________; (2)偶次方根的被开方数_________; (3)对数式的真数_______;(4)指数、对数式的底_________. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以_______ (6)实际问题中的函数的定义域还要保证实际问题有意义.
构成函数的三要素:_______、_________和__________
注意:(1)函数三个要素中.由于值域是由定义域和对应关系决定的,所以,如果两个函数的_______和_________完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
相同函数的判断方法:①____________________;②______________________(两点必须同时具备)
3. 函数图象的画法
①描点法:②图象变换法:常用变换方法有三种,即平移变换、__________和___________
4.区间的概念(1)区间的分类:________、_________、_________;
说明:实数集可以表示成(–∞,+∞)不可以表示成[–∞,+∞]--------切记高.考.资.源.
5.什么叫做映射:一般地,设A、B是两个____的集合,如果按某一个确定的对应法则f,使对于集合A中的________元素x,在集合B中都有_________的元素y与之对应,那么就称对应_________为从集合A到集合B的一个映射。
说明:函数是一种特殊的映射,映射是一种特殊的对应
①集合A、B及对应法则f是确定的②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有____与之对应(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是____;(Ⅲ)不要求集合B中的每一个元素在集合A中都有对应的元素。
6.函数最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:
(1)__________________________________(2)________________________________
那么我们称M是函数y=f(x)的最大值;
函数最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:
(1)__________________________________ (2)__________________________________
那么我们称M是函数y=f(x)的最小值
7:分段函数
在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而应把几种不同的表达式用一个左大括号括起来,并分别注明各部分的自变量的取值情况.说明:(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的____,值域是各段值域的_____.
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容



课内探究学案
一、学习目标
1.进一步加深对函数概念的理解,掌握同一函数的标准;
2.了解函数值域的概念并能熟练求解常见函数的定义域和值域.
学习重点
能熟练求解常见函数的定义域和值域.
学习难点
对同一函数标准的理解,尤其对函数的对应法则相同的理解.
二 、学习过程
创设情境
下列函数f(x)与g(x)是否表示同一个函数?为什么?
(1)f(x)= (x-1) 0;g(x)=1 ; (2) f(x)=x;g(x)=;
(3)f(x)=x 2;g(x)=(x + 1) 2 ; 、 (4) f(x) =|x|;g(x)=.
讲解新课
总结同一函数的标准:定义域相同、对应法则相同
例1 求下列函数的定义域:
(1); (2);
变式练习1求下列函数的定义域: (1);(2).
若A是函数的定义域,则对于A中的每一个x,在集合B都有一个值输出值y与之对应.我们将所有的输出值y组成的集合称为函数的值域.
因此我们可以知道:对于函数f:A B而言,如果如果值域是C,那么,因此不能将集合B当成是函数的值域.
我们把函数的定义域、对应法则、值域称为函数的三要素.如果函数的对应法则与定义域都确定了,那么函数的值域也就确定了.
例2.求下列两个函数的定义域与值域:
(1)f (x)=(x-1)2+1,x∈{-1,0,1,2,3};
(2)f (x)=( x-1)2+1.
变式练习2 求下列函数的值域:
(1),,;
(2);
三 、 当堂检测
(1)P25练习7;
(2)求下列函数的值域:
①;②,,6].③.
课后练习与提高
1.函数满足则常数等于( )
A. B. C. D.
2.设 , 则的值为( )
A. B. C. D.
3.已知函数定义域是,则的定义域是( )
A. B. C. D.
4.函数的值域是( )
A. B. C. D.
5.已知f(x)=x5+ax3+bx-8,f(-2)=10,则f(2)=____.
6.若函数,则=
1.2.2 函数的表示方法
第一课时 函数的几种表示方法
一 、 预习目标
通过预习理解函数的表示
二 、预习内容
1.列表法:通过列出 与对应 的表来表示 的方法叫做列表法
2.图象法:以 为横坐标,对应的 为纵坐标的点 的集合,叫做函数y=f(x)的图象,这种用“图形”表示函数的方法叫做图象法.
3.解析法(公式法):用 来表达函数y=f(x)(xA)中的f(x),这种表达函数的方法叫解析法,也称公式法。
4.分段函数:在函数的定义域内,对于自变量x的不同取值区间,有着 ,这样的函数通常叫做 。
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容



课内探究学案
一 、学习目标
1.掌握函数的三种主要表示方法
2.能选择恰当的方法表示具体问题中的函数关系
3.会画简单函数的图像
学习重难点:图像法、列表法、解析法表示函数
二 、 学习过程
表示函数的方法,常用的有解析法、列表法和图象法三种.
⑴解析法:就是把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式.
例如,s=60,A=,S=2,y=a+bx+c(a0),y=(x2)等等都是用解析式表示函数关系的.
优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段研究的函数主要是用解析法表示的函数.
⑵列表法:就是列出表格来表示两个变量的函数关系.
例如,学生的身高 单位:厘米
学号 1 2 3 4 5 6 7 8 9
身高 125 135 140 156 138 172 167 158 169
数学用表中的平方表、平方根表、三角函数表,银行里的利息表,列车时刻表等等都是用列表法来表示函数关系的.公共汽车上的票价表
优点:不需要计算就可以直接看出与自变量的值相对应的函数值.
⑶图象法:就是用函数图象表示两个变量之间的关系.
例如,气象台应用自动记录器描绘温度随时间变化的曲线,课本中我国人口出生率变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的.
优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质.
三、例题讲解
例1某种笔记本每个5元,买 x{1,2,3,4}个笔记本的钱数记为y(元),试写出以x为自变量的函数y的解析式,并画出这个函数的图像
变式练习1 设 求f[g(x)]。
例2作出函数的图象
变式练习2 画出函数y=∣x∣与函数y=∣x-2∣的图象
三 、当堂检测
课本第56页练习1,2,3
课后练习与提高
1.在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线y=f(x)(实线表示),另一种是平均价格曲线y=g(x)(虚线表示)〔如f(2)=3是指开始买卖后两个小时的即时价格为3元;g(2)=3表示两个小时内的平均价格为3元〕,下图给出的四个图象中,其中可能正确的是( )
2.函数f(x+1)为偶函数,且x<1时,f(x)=x2+1,则x>1时,f(x)的解析式为( )
A.f(x)=x2-4x+4 B.f(x)=x2-4x+5
C.f(x)=x2-4x-5 D.f(x)=x2+4x+5
3.函数的图象的大致形状是( )
4.如图,设点A是单位圆上的一定点,动点P从点A出发在圆上按逆时针方向旋转一周,点P所旋转过的的长为l,弦AP的长为d,则函数d=f(l)的图象大致是( )
5.用一根长为12m的铝合金条做成一个“目”字形窗户的框架(不计损耗),要使这个窗户通过的阳光最充足,则框架的长与宽应分别为_________.
6.已知定义域为R的函数f(x)满足f[f(x)-x2+x]=f(x)-x2+x.
(1)若f(2)=3,求f(1);又若f(0)=a,求f(a);
(2)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析表达式.
解答:
1 解析:解答该题要注意平均变化率是一个累积平均效应,因此可以得到正确选项为C.
答案:C
2 解析:因为f(x+1)为偶函数,
所以f(-x+1)=f(x+1),即f(x)=f(2-x).
当x>1时,2-x<1,此时,f(2-x)=(2-x)2+1,即f(x)=x2-4x+5.
答案:B
3 解析:该函数为一个分段函数,即为当x>0时函数f(x)=ax的图象单调递增;当x<0时,函数f(x)=-ax的图象单调递减.故选B.
答案:B
4 解析:函数在[0,π]上的解析式为
.
在[π,2π]上的解析式为,
故函数d=f(l)的解析式为,l∈[0,2π].
答案:C
5 解析:由题意可知,即是求窗户面积最大时的长与宽,设长为xm,则宽为()m,

解得当x=3时,.
∴长为3m,宽为1.5m.
答案:3m,1.5m
1.2.2 函数的表示方法
第二课时 分段函数
一 、预习目标
通过预习理解分段函数并能解决一些简单问题
二、预习内容
在同一直角坐标系中:做出函数的图象和函数的图象。
思考:问题1、所作出R上的图形是否可以作为某个函数的图象?
问题2、是什么样的函数的图象?和以前见到的图像有何异同?
问题3、如何表示这样的函数?
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容



课内探究学案
一 、学习目标
1.根据要求求函数的解析式
2.了解分段函数及其简单应用
3.理解分段函数是一个函数,而不是几个函数
学习重难点:函数解析式的求法
二 、 学习过程
、分段函数
由实际生活中,上海至港、澳、台地区信函部分资费表
重量级别 资费(元)
20克及20克以内 1.50
20克以上至100克 4.00
100克以上至250克 8.50
250克以上至500克 16.70
引出问题:若设信函的重量(克)应支付的资费为元,能否建立函数的解析式?导出分段函数的概念。
通过分析课本第46页的例4、例5进一步巩固分段函数概念,明确建立分段函数解析式的一般步骤,学会分段函数图象的作法
可选例:1、动点P从单位正方形ABCD顶点A开始运动,沿正方形ABCD的运动路程为自变量,写出P点与A点距离与的函数关系式。
2、在矩形ABCD中,AB=4m,BC=6m,动点P以每秒1m的速度,从A点出发,沿着矩形的边按A→D→C→B的顺序运动到B,设点P从点A处出发经过秒后,所构成的△ABP 面积为m2,求函数的解析式。
3、以小组为单位构造一个分段函数,并画出该函数的图象。
2、典题
例1 国内投寄信函(外埠),每封信函不超过20g付邮资80分,超过20g而不超过40g付邮资160分,依次类推,每封x g(0变式练习1 作函数y=|x-2|(x+1)的图像
例2画出函数y=|x|=的图象.
变式练习2 作出分段函数的图像
变式练习3. 作出函数的函数图像
三 、 当堂检测
教材第47页 练习A、B
课后练习与提高
1.定义运算设F(x)=f(x)g(x),若f(x)=sinx,g(x)=cosx,x∈R,则F(x)的值域为( )
A.[-1,1] B. C. D.
2.已知则的值为( )
A.-2 B.-1 C.1 D.2
3.设函数若f(1)+f(a)=2,则a的所有可能的值是__________.
4.某时钟的秒针端点A到中心点O的距离为5cm,秒针均匀地绕点O旋转,当时间t=0时,点A与钟面上标12的点B重合.将A、B两点间的距离d(cm)表示成t(s)的函数,则d=________,其中t∈[0,60].
5.对定义域分别是Df、Dg的函数y=f(x)、y=g(x),规定:函数h(x)=
.
(1)若函数,g(x)=x2,写出函数h(x)的解析式;
(2)求(1)中函数h(x)的值域;
(3)若g(x)=f(x+α),其中α是常数,且α∈[0,π],请设计一个定义域为R的函数y=f(x)及一个α的值,使得h(x)=cos4x,并予以证明.
解答
1 解析:由已知得
即F(x)=
F(x)=sinx,
当,kZ时,F(x)∈[-1,];
F(x)=cosx,当,k∈Z时,F(x)∈(-1,),故选C.
答案:C
3 解析:由已知可得,①当a≥0时,有e0+ea-1=1+ea-1=2,∴ea-1=1.∴a-1=0.∴a=1.②当-1<a<0时,有1+sin(a2π)=2,∴sin(a2π)=1.
∴.
又-1<a<0,∴0<a2<1,
∴当k=0时,有,∴.
综上可知,a=1或.
答案:1或
4 解析:由题意,得当时间经过t(s)时,秒针转过的角度的绝对值是弧度,因此当t∈(0,30)时,,由余弦定理,得
,
;当t∈(30,60)时,在△AOB中,,由余弦定理,得,,且当t=0或30或60时,相应的d(cm)与t(s)间的关系仍满足.
综上所述, ,其中t∈[0,60].
答案:
5 解:(1)
(2)当x≠1时,,
若x>1,则h(x)≥4,当x=2时等号成立;
若x<1,则h(x)≤0,当x=0时等号成立.
∴函数h(x)的值域是(-∞,0]∪{1}∪[4,+∞).
(3)解法一:令f(x)=sin2x+cos2x,,
则=cos2x-sin2x,
于是h(x)=f(x)·f(x+α)
=(sin2x+cos2x)(cos2x-sin2x)=cos4x.
解法二:令,,
则,
于是h(x)=f(x)·f(x+α)=()()
=1-2sin22x=cos4x.
1.3.1函数的单调性与最大(小)值(1)
课前预习学案
一、预习目标:
1. 通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;
2.熟记函数单调性的定义
二、预习内容:
1. 观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:
随x的增大,y的值有什么变化?
能否看出函数的最大、最小值?
函数图象是否具有某种对称性?
2.画出下列函数的图象,观察其变化规律:
(1)f(x) = x
从左至右图象上升还是下降 ______
在区间 ____________ 上,随着x的增
大,f(x)的值随着 ________ .
(2)f(x) = -x+2
从左至右图象上升还是下降 ______
在区间 ____________ 上,随着x的增
大,f(x)的值随着 ________ .
(3)f(x) = x2
在区间 ____________ 上,
f(x)的值随着x的增大而 ________ .
在区间 ____________ 上,f(x)的值随
着x的增大而 ________ .
3.一般地,设函数y=f(x)的定义域为I,
如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,
(1)当x1(2)当x1三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容



课内探究学案
一、学习目标
1. 通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;
2. 学会运用函数图象理解和研究函数的性质;
3. 能够熟练应用定义判断与证明函数在某区间上的单调性.
学习重点:函数的单调性及其几何意义.
学习难点:利用函数的单调性定义判断、证明函数的单调性
二、学习过程
例1 如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单
调区间,以及在每一单调区间上,它是增函数还是减函数?
解:
变式训练1 函数在上的单调性为 ( )
A.减函数 B.增函数. C.先增后减. D.先减后增
例2 物理学中的玻意耳定律P=(k为正常数)告诉我们,对于一定量的气体,当其体积V减少时,压强P将增大。试用函数的单调性证明之。
证明:
变式训练2 若函数在上是增函数,那么 ( )
A.b>0 B. b<0 C.m>0 D.m<0
例3.证明函数在(1,+∞)上为增函数
解:
变式训练3.:画出反比例函数的图象.
这个函数的定义域是什么?
它在定义域I上的单调性怎样?证明你的结论.
三、当堂检测
1、函数的单调增区间为 ( )
A. B. C. D.
2、函数,当时是增函数,当时是减函数,则等于 ( )
A.-3 B.13 C.7 D.由m而定的常数
3、若函数在上是减函数,则的取值范围是 ( )
A. B. C. D.
4、函数的减区间是____________________.
5、若函数在上是减函数,则的取值范围是______.
课后练习与提高
选择题
1、下列函数中,在区间(0,2)上为增函数的是 ( )
A. B. C. D.
2、函数的单调减区间是 ( )
A. B. C. D.
二、填空题:
3、函数,上的单调性是_____________________.
4、已知函数在上递增,那么的取值范围是________.
三、解答题:
5、设函数为R上的增函数,令
(1)、求证:在R上为增函数
(2)、若,求证
参考答案
例一 略 变式训练一B
例二 略 变式训练二C
例三
解:设则
变式训练三略
§1.3.1函数的单调性与最大(小)值(2)
课前预习学案
一、预习目标:
认知函数最值的定义及其几何意义
二、预习内容:
1. 画出下列函数的图象,并根据图象解答下列问题:
说出y=f(x)的单调区间,以及在各单调区间上的单调性;
指出图象的最高点或最低点,并说明它能体现函数的什么特征?
(1) (2)
(3) (4)
2. 一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:
(1)对于任意的x∈I,都有f(x)≤M;
(2)存在x0∈I,使得f(x0) = M
那么,称M是函数y=f(x)的最 值.
3.试给出最小值的定义.
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容



课内探究学案
一、学习目标
(1)理解函数的最大(小)值及其几何意义;
(2)学会运用函数图象理解和研究函数的性质;
学习重点:函数的最大(小)值及其几何意义.
学习难点:利用函数的单调性求函数的最大(小)值.
二、学习过程
例1.(教材P36例3)利用二次函数的性质确定函数的最大(小)值.
解:
变式训练1:设a,b∈R,且a>0,函数f(x)=x2+ax+2b,g(x)=ax+b, 在[-1,1]上g(x)的最大值为2,则f(2)等于( ).
A.4 B.8 C.10 D.16
例2.
旅 馆 定 价
一个星级旅馆有150个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如下:
房价(元) 住房率(%)
160 55
140 65
120 75
100 85
欲使每天的的营业额最高,应如何定价?
解:
变式训练2. 函数f(x)= x2+2(a-1)x+2在区间(-∞,4)上递减,则a的取值范围 ( http: / / www.21cnjy.com" \o "欢迎登陆21世纪教育网 )是( )
A. B. C. (-∞,5) D.
三、当堂检测
1.设偶函数的定义域为,当时,是增函数,则 ,的大小关系是 ( )
A Bhttp://www.21cnjy.com/ ( http: / / www.21cnjy.com" \o "欢迎登陆21世纪教育网 )
C Dhttp://www.21cnjy.com/ ( http: / / www.21cnjy.com" \o "欢迎登陆21世纪教育网 )
2.已知偶函数在区间单调递增,则满足<的x 取值范围是
A.(,) B.(,) C.(,) D.
3.若偶函数在上是增函数,则下列关系式中成立的是 ( )
A. B.
C. D.
4.已知偶函数在区间单调增加,则满足<的x 取值范围是( )
A.(,) B.[,) C.(,) D.[,)
课后练习与提高
1已知函数f(x)=ax2+2ax+4(0A.f(x1)C.f(x1)>f(x2) D.f(x1)与f(x2)的大小不能确定
2已知函数为R上的减函数,则满足的实数的取值范围是( )
A. B. C. D.
3.对、,记=,则函数f(x)=min{|x+1|,|x-1|}(xR)的单调增区间为
A. B. C. 和 D. 和
4.若函数内为增函数,则实数a的取值范围( )
A. B. C. D.
5.(04上海)若函数f(x)=a|x-b|+2在 上为增函数,则实数a,b的取值范围是____________
6设f(x),g(x)都是单调函数,有如下四个命题:
(1)若f(x)单调递增, g(x)单调递增,则f(x)-g(x)单调递增
(2) 若f(x)单调递增, g(x)单调递减,则f(x)-g(x)单调递增
(3)若f(x)单调递减, g(x)单调递增,则f(x)-g(x)单调递减
(4) 若f(x)单调递减, g(x)单调递减,则f(x)-g(x)单调递减
其中,正确命题的序号为_______________
7、求函数在[2,5]上的最大值和最小值
参考答案
例1略 变式训练1 B
当堂检测
1.A 2.A 3.D 4.A
课后练习与提高
1. A 2. C 3. D 4. A 5. a>0 b<0 6. (3)(2)
7.解析:,可证f(x)在[2,5]上是减函数,
故 当x=2时,f(x)最大值为2
当x=5时,f(x)最小值为
1.3.2函数的奇偶性
课前预习学案
一、预习目标:
理解函数的奇偶性及其几何意义
二、预习内容:
函数的奇偶性定义:
一般地,对于函数的定义域内的任意一个,都有 ,那么就叫做 函数.
一般地,对于函数的定义域的任意一个,都有 ,那么就叫做 函数.
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容



课内探究学案
一、学习目标
1.理解函数的奇偶性及其几何意义;
2.学会运用函数图象理解和研究函数的性质;
3.学会判断函数的奇偶性;
学习重点:函数的奇偶性及其几何意义
学习难点:判断函数的奇偶性的方法与格式
二、学习过程
例1.判断下列函数是否是偶函数.
(1) (2)
变式训练1(1)、 (2)、
(3)、
例2.判断下列函数的奇偶性
(1) (2) (3) (4)
变式训练2 判断函数的奇偶性:
三、【当堂检测】
1、函数的奇偶性是 ( )
A.奇函数 B. 偶函数 C.非奇非偶函数 D.既是奇函数又是偶函数
2、 若函数是偶函数,则是( )
A.奇函数 B. 偶函数 C.非奇非偶函数 D.既是奇函数又是偶函数
3、若函数是奇函数,且,则必有 ( )
A. B. C. D.不确定
4、函数是R上的偶函数,且在上单调递增,则下列各式成立的是
( )
A. B.
C. D.
5、已知函数是偶函数,其图像与x轴有四个交点,则方程的所有实数根的和为 ( )
A.4 B.2 C.1 D.0
6、函数是_______函数.
7、若函数为R上的奇函数,那么______________.
8、如果奇函数在区间[3,7]上是增函数,且最小值是5,那么在区间[-7,-3]上的最______________值为____________.
课后练习与提高
一、选择题
1、函数的奇偶性是 ( )
A.奇函数 B. 偶函数 C.非奇非偶函数 D.既是奇函数又是偶函数
2、函数是奇函数,图象上有一点为,则图象必过点( )
A. B. C. D.
二、填空题:
3、为R上的偶函数,且当时,,则当时,_____________________________.
4、函数为偶函数,那么的大小关系为__________________.
三、解答题:
5、已知函数是定义在R上的不恒为0的函数,且对于任意的,都有
(1)、求的值;
(2)、判断函数的奇偶性,并加以证明
参考答案
例1.解:函数不是偶函数,因为它的定义域关于原点不对称.
函数也不是偶函数,因为它的定义域为,并不关于原点对称.
变式训练1
解:(1)、函数的定义域为R,
所以为奇函数
(2)、函数的定义域为,定义域关于原点不对称,所以为非奇非偶函数
(3)、函数的定义域为{-2,2},,所以函数既是奇函数又是偶函数
第一课时 根式学案
课前预习学案
一.预习目标
1.通过填写下面知识空白更好理解根式的概念
2.准确把握根式的性质
二.预习内容
1.n次方根的定义:如果=a,那么x叫做      .(其中n>1且)
2.根式:形如     式子叫根式.这里n叫做   ,   叫做被开
数      
3.根式的性质:(1)=   ;(2) =    ;(3)当n是奇数时=   ;当是偶数时=   .
三.提出疑惑
通过以上自我预习你还有什么疑惑请写在下面的横线上      
课内探究学案
学习目标:1.理解n次根式.根式,根指数,被开方数等概念。
2.理解并记住方根的性质,并能熟练应用于相关计算中
学习重点:
(1)根式概念的理解。
(2)根式的化简
学习难点:
(1)根式的化简
二.课内探究
例1:化简下列根式:
(1);(2)
(3)
例2:计算:(1),(2)
(3)                     
例3:求使等式=成立的实数的取值范围.
三.当堂检测
1.以下说法正确的是(   )
A.正数的n次方根是正数 B.负数的n次方根是负数
C.0的n次方根是0  D.a的n次方根是
2.有意义,则的取值范围是(  )
A. B. 且
      
C.     D.
3.若
4.若=-,则      .
5.若,则n的取值范围是     .
课后练习与提高
1、当1<x<3时,化简的结果是( )
A.4-2X B.2 C.2X-4 D.4
2、已知,下列不等式(1);(2);(3);(4);(5)中恒成立的有( )
A、1个 B、2个 C、3个 D、4个
3、若有意义,则x的取值范围是(  )
A.x2 B.x-2 C.x-2或x2 D.xR
4.某企业生产总值的月平均增长率为,则年平均增长率为 。
5.若=3a-1,则a的取值范围是     .
6.若x<2,则的值是      .
7.化简 (1) +(2)
2.1.1-2分数指数幂
课前预习学案
预习目标
通过自己预习进一步理解分数指数幂的概念
能简单理解分数指数幂的性质及运算
预习内容
1.正整数指数幂:一个非零实数的零次幂的意义是:           .
        负整数指数幂的意义是:            .
2.分数指数幂:正数的正分数指数幂的意义是:          .
        正数的负分数指数幂的意义是:          .
      0的正分数指数幂的意义是:          .
        0的负分数指数幂的意义是:          .  
3.有理指数幂的运算性质:如果a>0,b>0,r,sQ,那么
  =     ;=     ;=       .
4.根式的运算,可以先把根式化成分数指数幂,然后利用        
 的运算性质进行运算.
提出疑惑
通过自己的预习你还有哪些疑惑请写在下面的横线上           
课内探究学案
学习目标
理解分数指数幂的概念
掌握有理数指数幂的运算性质,并能初步运用性质进行化简或求值
学习重点:
(1)分数指数幂概念的理解.
(2)掌握并运用分数指数幂的运算性质.
(3)运用有理数指数幂性质进行化简求值.
学习难点:
(1)分数指数幂概念的理解
(2)有理数指数幂性质的灵活应用.
学习过程
探究一
1.若,且为整数,则下列各式中正确的是 ( )
A、 B、 C、 D、
2.c<0,下列不等式中正确的是
( )
3.若有意义,则x的取值范围是(   )
A.xR B.x0.5  C.x>0.5  D.X<0.5
4.比较a=0.70.7、b=0.70.8、c=0.80.7三个数的大小关系是________.
探究二
例1:化简下列各式:(1);
(2)
例2:求值:(1)已知(常数)求的值;
已知x+y=12,xy=9x,且x<y,求的值
例3:已知,求的值.
当堂检测
1.下列各式中正确的是(  )
A.  B. C.  D.
2. 等于( )
A、 B、 C、 D、
3.下列互化中正确的是(   )
A. B. 
C. D.
4.若,且,则的值等于( )
A、 B、 C、 D、2
5.使有意义的x的取值范围是(   )
A.R B.且 C.-3<X<1 D.X<-3或x>1
课后练习与提高
1.已知a>0,b>0,且,b=9a,则a等于(   )
A. B.9 C. D.
2.且x>1,则的值(  )
A.2或-2 B.-2 C. D.2
3.    .
4.已知则=     .
5.已知,求的值.
2.1.1-3无理数指数幂
课前预习学案
一、预习目标
理解无理数指数幂得实际意义。
二、预习内容
教材52页至53页的意义解读。
三、提出疑惑
同学们,你们通过自主学习,还有哪些疑惑请写在下面的横线上——— ——— ———
课内探究学案
一、学习目标
1.能熟练进行根式与分数指数幂间的互化。
2.理解无理数指数幂的概念。
学习重点:实数指数幂的的运算及无理数指数幂的理解
学习难点:无理数指数幂的理解
二、学习过程
1.解释的意义,理解分数指数幂与根式的互化。探究的实际意义。
2.反思总结
得出结论:一般地,无理数指数幂(是无理数)是一个确定的实数。有理数指数幂的运算同样适用于无理数指数幂。
3.当堂检测
(1)参照以上过程,说明无理数指数幂的意义。
(2)计算下列各式
课后练习与提高
1.化简下列各式
(1) (2)
2.下列说法错误的是()
A.根式都可以用分数指数幂来表示
B.分数指数幂不表是相同式子的乘积,而是根式的一种新的写法
C.无理数指数幂有的不是实数
D.有理数指数幂的运算性质适用于无理数指数幂
2.1.2-1指数函数的概念学案
课前预习学案
预习目标
通过预习理解指数函数的概念
简单掌握指数函数的性质
预习内容
1.一般地,函数         叫做指数函数.
2.指数函数的定义域是    ,值域      .
3.指数函数的图像必过特殊点    .
4.指数函数,当  时,在上是增函数;当  时,       在上是减函数.
三.提出疑惑
通过以上自我预习你还有什么疑惑请写在下面的横线上      
课内探究学案
学习目标
理解指数函数的概念能画出具体的指数函数图象
在理解指数函数概念、性质的基础上,能运用所学知识解决简单的数学问题
学习重点:指数函数概念、图象和性质
学习难点:对底数的分类,如何由图象、解析式归纳指数函数的性质
学习过程
探究一
1.函数是指数函数,则有(   )
A.a=1或a=2 B.a=1 C.a=2 D.a>0且
2.关于指数函数和的图像,下列说法不正确的是(    )
A.它们的图像都过(0,1)点,并且都在x轴的上方.
B.它们的图像关于y轴对称,因此它们是偶函数.
C.它们的定义域都是R,值域都是(0,+).
D.自左向右看的图像是上升的,的图像是下降的.
3.函数在R上是减函数,则的取值范围是( )
A、 B、 C、 D、
4.指数函数f(x)的图像恒过点(-3,),则f(2)=   .
5.函数的单调递增区间是 。
探究二
例1:指出下列函数那些是指数函数:
(1) (2) (3) (4)(5) (6) (7) (8)
例2:求下列函数的定义域与值域:
(1) (2)(3) 
(4)
例3:将下列各数从小到大排列起来:
当堂检测
1.下列关系式中正确的是(    )
A.<< B.<<
C.<< D.<<
2.若-1<x<0,则下列不等式中正确的是(   )
A.<< B.<< 
C.<< D.<<
3.下列函数中值域是(0,+)的函数是(   )
A. B. C. D.
4.函数的值域是( )
A、 B、 C、 D、
课后练习与提高
1.函数图像在不在第二象限且不过原点,则m的      取值范围是(   )
A.a>1 b.a>1且m<0 C.0<a<1且m<0 D.0<a<1
2.设0<a<b<1,则下列不等式中正确的是(   )
A.< B.< C.> D.<
3.已知x>0,函数y=(a2-8)x的值恒大于1,则实数a的取值范围是________.
4.若,则 。
5.已知函数
(1)求f(x)的定义域;
(2)讨论f(x)的奇偶性;
指数函数的图像与性质
课前预习学案
预习目标
了解指数函数的定义及其性质.
预习内容
1.一般地,函数         叫做指数函数.
2.指数函数的定义域是    ,值域      .
3.指数函数的图像必过特殊点    .
4.指数函数,当  时,在上是增函数;当  时,       在上是减函数.
提出疑惑
同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一.学习目标
(1)使学生了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;
(2)理解指数函数的的概念和意义,能画出具体指数函数的图象,探索并理解指数函数的单调性和特殊点;
(3)在学习的过程中体会研究具体函数及其性质的过程和方法,如具体到一般的过程、数形结合的方法等.
教学重点:指数函数的的概念和性质.
教学难点:用数形结合的方法从具体到一般地探索、概括指数函数的性质.
二、学习过程
1.(合作讨论)人口问题是全球性问题,由于全球人口迅猛增加,已引起全世界关注.世界人口2000年大约是60亿,而且以每年1.3%的增长率增长,按照这种增长速度,到2050年世界人口将达到100多亿,大有“人口爆炸”的趋势.为此,全球范围内敲起了人口警钟,并把每年的7月11日定为“世界人口日”,呼吁各国要控制人口增长.为了控制人口过快增长,许多国家都实行了计划生育.
我国人口问题更为突出,在耕地面积只占世界7%的国土上,却养育着22%的世界人口.因此,中国的人口问题是公认的社会问题.2000年第五次人口普查,中国人口已达到13亿,年增长率约为1%.为了有效地控制人口过快增长,实行计划生育成为我国一项基本国策.
按照上述材料中的1%的增长率,从2000年起,x年后我国的人口将达到2000年的多少倍?
到2050年我国的人口将达到多少?
你认为人口的过快增长会给社会的发展带来什么样的影响?
2.上一节中GDP问题中时间x与GDP值y的对应关系y=1.073x(x∈N*,x≤20)能否构成函数?
3.一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84%,那么以时间x年为自变量,残留量y的函数关系式是什么?
上面的几个函数有什么共同特征?
探究一:指数函数的定义及特点:
例1:指出下列函数那些是指数函数:
(1)(2)(3) (4)(5)(6)(7)(8)
变式训练一:1.函数是指数函数,则有(   )
A.a=1或a=2 B.a=1 C.a=2 D.a>0且
探究二:指数函数的图像与性质
在同一坐标系中画出下列函数的图象:
(1)
(2)
(3)
(4)
例2:求下列函数的定义域
(1) (2)
变式训练二:的定义域    
反思总结
四.当堂检测
1.关于指数函数和的图像,下列说法不正确的是(    )
A.它们的图像都过(0,1)点,并且都在x轴的上方.
B.它们的图像关于y轴对称,因此它们是偶函数.
C.它们的定义域都是R,值域都是(0,+).
D.自左向右看的图像是上升的,的图像是下降的.
2.函数在R上是减函数,则的取值范围是( )
A、 B、 C、 D、
3.指数函数f(x)的图像恒过点(-3,),则f(2)=   .
参考答案:1.B 2.D 3.4
  
课后练习与提高
1.下列关系式中正确的是(    )
A.<< B.<<
C.<< D.<<
2.下列函数中值域是(0,+)的函数是(   )
A. B. C. D.
3.函数在[0,1]上的最大值与最小值之和为3,则a等于(  )
A.0.5  B.2  C.4  D.0.25
4.函数的定义域是
5.已知f(x)=,则f[f(-1)]=    .
6.设,解关于的不等式。
指数函数的性质的应用
课前预习学案
预习目标
能熟练说出指数函数的定义及其性质.
预习内容
1.函数的定义域是   ,值域     .
2.函数.
 当a>1时,若x>0时,y  1,
 若x<0时,y  1;若x=1时,y   1;
   当0<a<1时,若x>0时,y  1,
 若x<0时,y  1;若x=1时,y   1.
3.函数是   函数(就奇偶性填).
提出疑惑
同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标:
(1)能熟练说出指数函数的性质。
(2)能画出指数型函数的图像,并会求复合函数的性质。
(3)在学习的过程中体会研究指数函数性质的应用,养成良好的思维习惯。
教学重点:指数函数的性质的应用。
教学难点:指数函数的性质的应用。
二、教学过程
探究点一:平移指数函数的图像
例1:画出函数的图像,并根据图像指出它
   的单调区间.
解:
变式训练一:已知函数
(1)作出其图像;
(2)由图像指出其单调区间;
解:
探究点二:复合函数的性质
例2:已知函数
(1)求f(x)的定义域;
(2)讨论f(x)的奇偶性;
解:
变式训练二:已知函数,试判断函数的奇偶性;
反思总结
四.当堂检测
1.函数y=a|x|(0<a<1)的图像是(  )
2.函数,,若恒有,那么底数a的取值范围是(   )
A.a>1  B.0<a<1  C.0<a<1或a>1 D.无法确定                
3.函数y=2-x的图像可以看成是由函数y=2-x+1+3的图像平移后得到的,平移过程是 [ ]
A.向左平移1个单位,向上平移3个单位
B.向左平移1个单位,向下平移3个单位
C.向右平移1个单位,向上平移3个单位
D.向右平移1个单位,向下平移3个单位
4.函数y=ax+2-3(a>0且a≠1)必过定点________.
参考答案: 1.C 2.B 3.A 4.(-2,-2)
  
课后练习与提高
1.函数是( )
A、奇函数 B、偶函数 C、既奇又偶函数 D、非奇非偶函数
2.函数的单调递减区间是(  )
A.(-∞,+∞) B.(-∞,0)
C.(0,+∞) D.(-∞,0)和(0,+∞)
3.函数的图象如图,其中a、b为常数,则下列
结论正确的是 ( )
A. B.
C. D.
4.已知函数y=f(x)满足对任意,
有f(+)=f()f(),且x>0时,f(x)<1,那么函数f(x)  在定义域上的单调性为    .
5.函数y=4x与函数y=4-x的图像关于________对称.
6.已知函数,若为奇函数,求a的值。
2.2.1对数的概念导学案
课前预习学案
一、预习目标
了解对数的概念,知道常用对数与自然对数以及这两种对数符号的记法,了解对数恒等式,
二、预习内容
对数概念:
1.一般地,如果()的次幂等于,即,那么数叫做 ,记作.其中,叫做对数的 ,叫做 .
例如:,读作:以3为底9的对数为2 .
(1)概念分析:对数式中各字母的取值范围:
: ; : ; :.
(2)零和负数没有对数;1的对数为0,即(且);底数的对数为1,即(且).
2.以10为底的对数称为 ,以e为底的对数称为
3.
三、提出疑惑
课内探究学案
学习目标
理解指数式与对数式的相互关系,能熟练进行指数式与对数式的互化。2‘
并能运用恒等式进行计算。
学习重难点:理解对数的概念,能够进行对数式与指数式的互化、
学习过程
(一)合作探究
探究一.指数式和对数式互化
1.将下列指数式写成对数式:
解析:直接用对数式的定义进行改写.
解:
点评:主要考察了底真树与幂三者的位置.
变1.将下列对数式写成指数式:
探究二.求对数值
2、⑴,⑵,⑶,⑷
解析:将对数式写成指数式,再求解.
解:
点评:考察了指数与对数的相互转化.
变2.求下列对数的值
(1) (2) (3)
(二)反思总结
(三)当堂检测
1.完成下列指数式与对数式的互化:
(1)2 , (2) ,
(3) , (4) ,
(5) , (6)   .
2.求下列对数的值
(1)=   ,(2)=   ,(3)=     ,
(4)= ,(5)=
课后练习与提高
1.对数式的值为 ( )
(A) 1(B)-1(C)(D)-
2、若log[ log( logx)] = 0,则x为( ).
(A). (B). (C). (D).
3.计算
(1) (2)
4.已知且,,,求
的值。
2.2.1对数的运算性质导学案
课前预习学案
一、预习目标
初步了解对数的运算性质,知道推导这些法则的依据和过程;
二、预习内容
1.对数的定义 其中 a 与 N
2.指数式与对数式的互化
3.重要公式:
⑴负数与零没有对数;
⑵ ,
⑶对数恒等式
3.指数运算法则
三、提出疑惑
课内探究学案
学习目标
1.掌握对数的运算性质,并能理解推导这些法则的依据和过程;
2.能较熟练地运用法则解决问题;
学习重点、对数运算性质
学习难点:对数运算性质的证明方法.
学习过程
(一)合作探究
探究一:积、商、幂的对数运算法则:
如果 a > 0,a 1,M > 0, N > 0 有:
解析:利用对数的性质与对数式与指数式的关系证明.
点评:知道公式的推倒过程有利于学生掌握公式.
探究二
例1 计算
(1)25, (2)1, (3)(×), (4)lg
解析:用对数的运算性质进行计算.
解:
点评:本题主要考察了对数性质的应用,有助于学生掌握性质.
例2 用,,表示下列各式:
解析:利用对数的性质化简.
解:
点评:熟悉对数的运算性质.
变式练习:计算:
(1)lg14-2lg+lg7-lg18 (2) (3)
(二)反思总结
(三)当堂检测
1.求下列各式的值:
(1)6-3 (2)lg5+lg2
2. 用lgx,lgy,lgz表示下列各式:
(1) lg(xyz);     (2)lg;
课后练习与提高
1.若3a=2,则log38-2log36用a的代数式可表示为( )
(A)a-2 (B)3a-(1+a)2 (C)5a-2 (D)3a-a2
2、已知lga,lgb是方程2x-4x+1 = 0的两个根,则(lg)的值是( ).
(A).4 (B).3 (C).2 (D).1
3、下列各式中正确的个数是 ( ).
  ①  ② ③     
  (A)0 (B)1 (C)2 (D)3
4.已知,,那么______.
5、若lg2 = a,lg3 = b,则lg=_____________.
6. 用lgx,lgy,lgz表示下列各式:
(1); (2)
2.2.1对数的运算性质的应用学案
课前预习学案
一、预习目标
记住对数的定义;对数的运算性质和换底公式.
二、预习内容
1、对数的定义_________________
2.对数的运算性质:如果 a > 0 , a 1, M > 0 ,N > 0, 则
(1)
(2)
(3)
3.换底公式
其中
三、提出疑惑
课内探究学案
学习目标
1.掌握对数的运算性质,并能理解推导这些法则的依据和过程;
2.能较熟练地运用法则解决问题;
学习重点:对数运算性质
学习难点:对数运算性质的应用.
二、学习过程
探究点一
例1.(1).把下列各题的指数式写成对数式、对数式写成指数式
(1)=16   (2)=1   (3)x=27 (4)x=7
解析:利用指数式与对数式的关系解.
解:
点评:本题主要考察的是指数式与对数式的互化.
探究点二
例2计算: ⑴,⑵,⑶,⑷
解析:利用对数的性质解.

点评:让学生熟练掌握对数的运算性质及计算方法.
例3.利用换底公式计算
(1)log25 log53 log32 (2)
解析:利用换底公式计算
解:
 点评:让学生熟悉换底公式.
三、反思总结
四、当堂检测
1.指数式化成对数式或对数式化成指数式
(1)=2 (2)=0.5 (3)x=3
2.试求:的值
课后练习与提高
1.对于,,下列命题中,正确命题的个数是(  )
①若,则;
②若,则;
③若,则;
④若,则
A. B. C. D.
2.设a,b,c∈R,且3= 4= 6,则( ).
(A).=+ (B).=+ (C).=+ (D).=+
3..已知3+5= A,且+= 2,则A的值是( ).
(A).15 (B). (C).± (D).225
4.2loga(M-2N)=logaM+logaN,则的值为( )
5.若loga2=m,loga3=n,a2m+n= .
6.已知 ,求 的值.
2.2.2对数函数及其性质学案
课前预习学案
一、预习目标
记住对数函数的定义;初步把握对数函数的图象与性质.
二、预习内容
1、对数函数的定义_______________________________________.
2、对数函数y = logax (a>0,且a≠ 1)的图像和性质
研究函数 和 的图象;
请同学们完成x,y对应值表,并用描点法分别画出函数 和 的图象:
X … 1 …
… 0 …
… 0 …
观察发现:认真观察函数 y=log2x的图象填写下表: (表一)
图象特征 代数表述
 图象位于y轴的________. 定义域为: 
 图象向上、向下呈_________趋势.  值域为:
图象自左向右呈___________趋势. 函数在(0,+∞)上是:
观察发现:认真观察函数 的图象填写下表: (表二)
图象特征 代数表述
 
   
   
对数函数y = logax (a>0,且a≠ 1)的图像和性质: (表三)
01
图象 SHAPE \* MERGEFORMAT SHAPE \* MERGEFORMAT
定义域
值 域
性质
三、提出疑惑
课内探究学案
一、学习目标
1理解对数函数的概念,熟悉对数函数的图象与性质规律.
2掌握对数函数的性质.
学习重难点
对数函数的图象与性质
二、学习过程
探究点一
例1:求下列函数的定义域:
(1) ; (2) .
练习:求下列函数的定义域:
(1) ; (2) .
解析 : 直接利用对数函数的定义域求解,而不能先化简.
解:略
点评:本题主要考查了对数函数的定义域极其求法.
探究点二
例2:比较下列各组数中两个值的大小:
(1) (2)
(3)loga5.1,loga5.9 (a>0,且a≠ 1).
(1) ____ ;
(2) ____ ;
(3) 若 < , 则m____n;
(4)若 > ,则m____n.
三、反思总结
四、当堂检测
1、求下列函数的定义域
(1) (2)
2、比较下列各组数中两个值的大小
(1) (2)
课后练习与提高
1.函数f(x)=lg()是 (奇、偶)函数。
2.已知函数f(x)=log0.5 (-x2+4x+5),则f(3)与f(4)的大小关系为 。
3.已知函数在[0,1]上是减函数,求实数a的取值范围.
2.2.2对数函数的性质的应用(1)学案
课前预习学案
一、预习目标
记住对数函数的定义;掌握对数函数的图象与性质.
二、预习内容
对数函数的性质:
a>1 0图象
性质 定义域:
值域:
过点( , ),即当 时,
时 时 时 时
在( , )上是增函数 在( , )上是减函数
提出疑惑
同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标
1理解对数函数的概念,熟悉对数函数的图象与性质规律. 掌握比较同底数对数大小的方法
2掌握对数函数的性质.
学习重点:性质的应用
学习难点:性质的应用.
二、学习过程
探究点一 : 比较大小
例1比较下列各组数中两个值的大小:
⑴; ⑵;

解析:利用对数函数的单调性解.
解:略
点评:本题主要考察了利用函数的单调性比较对数的大小.
变式练习:比较下列各组中两个值的大小:
⑴; ⑵
探究点二:求定义域、值域:
例3 求下列函数的定义域、值域:
⑴ ⑵
⑶ ⑷
解析:利用对数函数的性质解.
解:略
点评:本题主要考察了利用函数的定义域与值域.
三、反思总结
四、当堂检测
1.比较0.7与0.8两值大小
2.已知下列不等式,比较正数m、n的大小:
(1)m<n (2) m>n
(3) m<n(0<a<1) (4) m>n(a>1)
课后练习与提高
1、函数的定义域是 ( )
A. B. C. D.
2、设 ( )
A. B. C. D.
3、已知且,则下列不等式中成立的是 ( )
A. B.
C. D.
3.方程lgx+lg(x+3)=1的解x=___________________.
4.已知f(x)的定义域为[0,1],则函数y=f[log(3-x)]的定义域是__________.
2.2.2对数函数的性质的应用(2)
课前预习学案
一、预习目标
记住对数函数的定义;掌握对数函数的图象与性质.
二、预习内容
1.对数函数的性质:
a>1 0图象
性质 定义域:
值域:
过点( , ),即当 时,
时 时 时 时
在( , )上是增函数 在( , )上是减函数
2.函数恒过的定点坐标是 ( )
A. B. C. D.
3.画出函数y=x及y=的图象,并且说明这两个函数的相同性质和不同性质.
课内探究学案
学习目标
使学生理解对数函数的定义,进一步掌握对数函数的图像和性质
2、通过定义的复习,图像特征的观察、巩固过程使学生懂得理论与实践 的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。
教学重点:对数函数的图像和性质
教学难点:底数 a 的变化对函数性质的影响
二、学习过程
探究点一
例1求下列函数的定义域:
(1); (2); (3)
解析:利用对数函数的定义域解.
解:略
点评:本题主要考察了利用函数的定义域.
探究点二
例2.比较大小
1. ,, 2.
解析:利用对数函数的单调性解.
解:略
点评:本题主要考察了利用函数的单调性比较对数的大小.
探究点三
例3求下列函数的反函数
① ②
解析:利用对数函数与指数函数互为反函数解.
解:略
点评:本题主要考察了反函数的解法.
三、反思总结
四、当堂检测
1.求下列函数的定义域:
(1)y=(1-x) (2)y=
(3)y=
2.若求实数的取值范围
课后练习与提高
1、函数的定义域是( )
A、 B、
C、 D、
2、函数的值域是( )
A、 B、 C、 D、
3、若,那么满足的条件是( )
A、 B、 C、 D、
4、已知函数,判断的奇偶性和单调性。
2.3 幂函数学案
课前预习学案
一、预习目标
预习“五个具体的幂函数”,初步认识幂函数的概念和性质。
二、预习内容
1.写出下列函数的定义域,并画出函数图象、指出函数的单调性和奇偶性:
2.下列四个命题中正确的为 ( )
A.幂函数的图象都经过
B.当n<0时,幂函数 的值在定义域内随x的值增大而减小
C.幂函数的图象不可能出现在第四象限内
D.当n=0时,幂函数图象是一条直线
3.下列各式中正确的是 ( )
A.-2.4 <(-4.2) B.()<() C.(-π) >(-2 ) D.(-π) <5
4.幂函数的图象过点(2, 4 ), 则它的单调递增区间是。
A.(0, +∞) B.[0, +∞) C.(-∞, 0) D.(-∞, +∞)
5.已知幂函数 的图象与x轴、y轴都无公共点,且关于y轴对称,则m=__ ___
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标
1.掌握幂函数的形式特征,掌握具体幂函数的图象和性质。
2.能应用幂函数的图象和性质解决有关简单问题。
学习重难点:能应用幂函数的图象和性质解决有关简单问题,概括出幂函数的性质。
二、学习过程
探究任务一:幂函数的概念
问题:分析以下五个函数,它们有什么共同特征?
(1)边长为的正方形面积,是的函数;
(2)面积为的正方形边长,是的函数;
(3)边长为的立方体体积,是的函数;
(4)某人内骑车行进了1,则他骑车的平均速度,这里是的函数;
(5)购买每本1元的练习本本,则需支付元,这里是的函数.
新知:一般地,形如的函数称为幂函数,其中为常数.
试试:判断下列函数哪些是幂函数.
①;②;③;④.
探究任务二:幂函数的图象与性质
问题:作出下列函数的图象:(1);(2);(3);(4);(5).
从图象分析出幂函数所具有的性质.
观察图象,总结填写下表:
定义域
值域
奇偶性
单调性
定点
三、 典型例题
例1讨论在的单调性.
变式训练一:讨论的单调性.
例2比较大小:
(1)与; (2)与;
(3)与.
变式训练二
练1. 讨论函数的定义域、奇偶性,作出它的图象,并根据图象说明函数的单调性.
练2. 比大小:
(1)与; (2)与;
(3)与.
四、反思总结
幂函数的图象,在第 象限内,直线 的右侧,图象由下至上,指数由小到大. 轴和直线之间,图象由上至下,指数.
五、当堂达标
1. 若幂函数在上是增函数,则( ).
A.>0 B.<0
C.=0 D.不能确定
2. 函数的图象是( ).
A. B. C. D.
3. 若,那么下列不等式成立的是( ).
A.C.课后练习与提高
选择题
1、下列所给出的函数中,是幂函数的是 ( )
A. B. C. D.
2、下列命题中正确的是 ( )
A.当时函数的图象是一条直线
B.幂函数的图象都经过(0,0)和(1,1)点
C.若幂函数是奇函数,则是定义域上的增函数
D.幂函数的图象不可能出现在第四象限
3、如图所示,幂函数在第一象限的图象,比较的大小( )
A.
B.
C.
D.
4. 比大小:
(1); (2).
5. 已知幂函数的图象过点,则它的解析式为 .
6.若幂函数的图象不过原点,求:值。
3.1.1 方程的根与函数的零点导学案
课前预习学案
一、预习目标
预习方程的根与函数零点的关系。
二、预习内容
(预习教材P86~ P88,找出疑惑之处)
复习1:一元二次方程+bx+c=0 (a0)的解法.
判别式= .
当 0,方程有两根,为 ;
当 0,方程有一根,为 ;
当 0,方程无实数.
复习2:方程+bx+c=0 (a0)的根与二次函数y=ax+bx+c (a0)的图象之间有什么关系?
判别式 一元二次方程 二次函数图象
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标
1. 结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;
2. 掌握零点存在的判定条件.
学习重难点:方程的根与函数的零点的关系,求函数零点的个数问题
二、学习过程
探究任务一:函数零点与方程的根的关系
问题:
① 方程的解为 ,函数的图象与x轴有 个交点,坐标为 .
② 方程的解为 ,函数的图象与x轴有 个交点,坐标为 .
③ 方程的解为 ,函数的图象与x轴有 个交点,坐标为 .
根据以上结论,可以得到:
一元二次方程的根就是相应二次函数的图象与x轴交点的 .
你能将结论进一步推广到吗?
新知:对于函数,我们把使的实数x叫做函数的零点(zero point).
反思:
函数的零点、方程的实数根、函数 的图象与x轴交点的横坐标,三者有什么关系?
试试:
(1)函数的零点为 ; (2)函数的零点为 .
小结:方程有实数根函数的图象与x轴有交点函数有零点.
探究任务二:零点存在性定理
问题:
① 作出的图象,求的值,观察和的符号
② 观察下面函数的图象,
在区间上 零点; 0;
在区间上 零点; 0;
在区间上 零点; 0.
新知:如果函数在区间上的图象是连续不断的一条曲线,并且有<0,那么,函数在区间内有零点,即存在,使得,这个c也就是方程的根.
讨论:零点个数一定是一个吗? 逆定理成立吗?试结合图形来分析.
三、 典型例题
例1求函数的零点的个数.
变式一:求函数的零点所在区间.
小结:函数零点的求法.
① 代数法:求方程的实数根;
② 几何法:对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
例2求函数的零点大致所在区间.
变式训练二
求下列函数的零点:
(1);
(2).
四、反思总结
图像连续的函数的零点的性质:
(1)函数的图像是连续的,当它通过零点时(非偶次零点),函数值变号.
推论:函数在区间上的图像是连续的,且,那么函数在区间上至少有一个零点.
(2)相邻两个零点之间的函数值保持同号.
五、当堂达标
1. 求函数的零点所在区间,并画出它的大致图象.
课后练习与提高
1. 函数的零点个数为( ).
A. 1 B. 2 C. 3 D. 4
2.若函数在上连续,且有.则函数在上( ).
A. 一定没有零点 B. 至少有一个零点
C. 只有一个零点 D. 零点情况不确定
3. 函数的零点所在区间为( ).
A. B. C. D.
4. 函数的零点为 .
5. 若函数为定义域是R的奇函数,且在上有一个零点.则的零点个数为 .
6. 已知函数.
(1)为何值时,函数的图象与轴有两个零点;
(2)若函数至少有一个零点在原点右侧,求值.
3.1.2 用二分法求方程的近似解学案
课前预习学案
一、预习目标
能说出零点的概念,零点的等价性,零点存在性定理。
二、预习内容
(预习教材P89~ P91,找出疑惑之处)
复习1:什么叫零点?零点的等价性?零点存在性定理?
对于函数,我们把使 的实数x叫做函数的零点.
方程有实数根函数的图象与x轴 函数 .
如果函数在区间上的图象是连续不断的一条曲线,并且有 ,那么,函数在区间内有零点.
复习2:一元二次方程求根公式? 三次方程? 四次方程?
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标
1. 根据具体函数图象,能够借助计算器用二分法求相应方程的近似解;
2. 通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.
学习重点:通过用二分法求方程的近似解,体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识.
学习难点:精确度概念的理解,求方程近似解一般步骤的概括和理解
二、学习过程
探究任务:二分法的思想及步骤
问题:有12个小球,质量均匀,只有一个是比别的球重的,你用天平称几次可以找出这个球的,要求次数越少越好.
解法:
第一次,两端各放 个球,低的那一端一定有重球;
第二次,两端各放 个球,低的那一端一定有重球;
第三次,两端各放 个球,如果平衡,剩下的就是重球,否则,低的就是重球.
思考:以上的方法其实这就是一种二分法的思想,采用类似的方法,如何求的零点所在区间?如何找出这个零点?
新知:对于在区间上连续不断且<0的函数,通过不断的把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法(bisection).
反思:
给定精度ε,用二分法求函数的零点近似值的步骤如何呢?
①确定区间,验证,给定精度ε;
②求区间的中点;
③计算: 若,则就是函数的零点; 若,则令(此时零点); 若,则令(此时零点);
④判断是否达到精度ε;即若,则得到零点零点值a(或b);否则重复步骤②~④.
三、 典型例题
例1 借助计算器或计算机,利用二分法求方程的近似解.
变式:求方程的根大致所在区间.
例2求方程的解的个数及其大致所在区间.
变式训练
求函数的一个正数零点(精确到)
零点所在区间 中点函数值符号 区间长度
四、反思总结
① 二分法的概念;②二分法步骤;③二分法思想.
五、当堂达标
1. 求方程的实数解个数及其大致所在区间.
课后练习与提高
1.若函数在区间上为减函数,则在上( ).
A. 至少有一个零点 B. 只有一个零点
C. 没有零点 D. 至多有一个零点
2. 下列函数图象与轴均有交点,其中不能用二分法求函数零点近似值的是(  ).
3. 函数的零点所在区间为( ).
A. B. C. D.
4. 用二分法求方程在区间[2,3]内的实根,由计算器可算得,,,那么下一个有根区间为 .
5. 函数的零点个数为 ,大致所在区间为 .
6. 借助于计算机或计算器,用二分法求函数的零点(精确到).
3.2.1几类不同增长的函数模型学案
课前预习学案
一、预习目标
对于基本的实际问题能抽象出数学模型。
二、预习内容
(预习教材P95~ P98,找出疑惑之处)
阅读:澳大利亚兔子数“爆炸”
有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标
1. 结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异;
2. 借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异;
3. 恰当运用函数的三种表示法(解析式、图象、表格)并借助信息技术解决一些实际问题.
学习重点:将实际问题转化为数学问题,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
学习难点:如何选择和利用不同函数模型增长差异性分析解决实际问题。
二、学习过程
典型例题
例1假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:
方案一:每天回报40元;
方案二:第一天回报10元,以后每天比前一天多回报10元;
方案三:第一天回报0 .4元,以后每天的回报比前一天翻一番.
请问,你会选择哪种投资方案?
反思:
① 在本例中涉及哪些数量关系?如何用函数描述这些数量关系?
② 根据此例的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?借助计算器或计算机作出函数图象,并通过图象描述一下三种方案的特点.
变式训练1 某种计算机病毒是通过电子邮件进行传播的,如果某台计算机感染上这种病毒,那么每轮病毒发作时,这台计算机都可能感染没被感染的20台计算机. 现在10台计算机在第1轮病毒发作时被感染,问在第5轮病毒发作时可能有多少台计算机被感染?
例2某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金(单位:万元)随销售利润(单位:万元)的增加而增加但奖