16.2.3最简二次根式
一、学习目标
1、理解最简二次根式的概念。
2、把二次根式化成最简二次根式.
3、熟练进行二次根式的乘除混合运算。
二、学习重点、难点
重点:最简二次根式的运用。
难点:会判断二次根式是否是最简二次根式和二次根式的乘除混合运算。
三、学习过程
(一)复习回顾1、化简(1) (2)
2、结合上题的计算结果,回顾前两节中利用积、商的算术平方根的性质化简二次根式达到的要求是什么?
(二)提出问题:
1、什么是最简二次根式?
2、如何判断一个二次根式是否是最简二次根式?
3、如何进行二次根式的乘除混合运算?
(三)自主学习
学习课本第9页内容,完成下面的题目:
1、满足于 , 的二次根式称为最简二次根式.
2、化简:
(1) (2) (3) (4)
(四)合作交流
1、计算:
2、比较下列数的大小:(1)与 (2)
3、如图,在Rt△ABC中,∠C=90°,AC=3cm,BC=6cm,
求AB的长.
(五)精讲点拨
1、化简二次根式的方法有多种,比较常见的是运用积、商的算术平方根的性质和分母有理化。
2、判断是否为最简二次根式的两条标准:(1)被开方数不含分母;(2)被开方数中所有因数或因式的幂的指数都小于2.
(六)拓展延伸
观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:
,
,
同理可得: =,……
从计算结果中找出规律,并利用这一规律计算
(……+)()的值.
(七)达标测试:
A组
1、选择题
(1)如果(y>0)是二次根式,化为最简二次根式是( ).
A.(y>0) B.(y>0) C.(y>0) D.以上都不对
(2)化简二次根式的结果是( )
A、 B、- C、 D、-
2、填空:
(1)化简=_________.(x≥0)
(2)已知,则的值等于__________.
3、计算:
(1) (2)
B组
1、计算: (a>0,b>0)
2、若x、y为实数,且y=,求的值。