二次根式复习导学案

文档属性

名称 二次根式复习导学案
格式 zip
文件大小 54.9KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2014-02-04 18:37:34

图片预览

文档简介

《二次根式》复习
一、学习目标
1、了解二次根式的定义,掌握二次根式有意义的条件和性质。
2、熟练进行二次根式的乘除法运算。
3、理解同类二次根式的定义,熟练进行二次根式的加减法运算。
4、了解最简二次根式的定义,能运用相关性质进行化简二次根式。
二、学习重点、难点
重点:二次根式的计算和化简。
难点:二次根式的混合运算,正确依据相关性质化简二次根式。
三、复习过程
(一)自主复习
学习课本第18页“小结”的内容,记住相关知识,完成练习:
1.若a>0,a的平方根可表示为___________,a的算术平方根可表示________
2.当a______时,有意义,当a______时,没有意义。
3.;
4.
5.
(二)合作交流,展示反馈
1、式子成立的条件是什么
2、计算: (1) (2)
3.(1) (2)
(三)精讲点拨
在二次根式的计算、化简及求值等问题中,常运用以下几个式子:
(1)
(2)
(3)
(4)
(5)
(四)拓展延伸
1、用三种方法化简
解:第一种方法:直接约分
第二种方法:分母有理化
第三种方法:二次根式的除法
2、已知m,m为实数,满足,求6m-3n的值。
(五)达标测试:
A组
1、选择题:
(1)化简的结果是( )
A 5 B -5 C 士5 D 25
(2)代数式中,x的取值范围是( )
A B C D
(3)下列各运算,正确的是( )
A B
C D
(4)如果是二次根式,化为最简二次根式是( )
A B C D.以上都不对
(5)化简的结果是( )
2、计算.(1) (2)
(3) (4)
3、已知求的值
B组
1、选择:
(1),则( )
A a,b互为相反数 B a,b互为倒数 C D a=b
(2)在下列各式中,化简正确的是( )
A B
C D
(3)把中根号外的移人根号内得( )
2、计算:
(1) (2)
(3)
3、归纳与猜想:观察下列各式及其验证过程:
(1)按上述两个等式及其验证过程的基本思路,猜想的变化结果并进行验证.
(2)针对上述各式反映的规律,写出n(n为任意自然数,且n≥2)表示的等式并进行验证.