【精品解析】26.2 实际问题与反比例函数 人教版九年级下册同步练习

文档属性

名称 【精品解析】26.2 实际问题与反比例函数 人教版九年级下册同步练习
格式 zip
文件大小 167.4KB
资源类型 试卷
版本资源
科目 数学
更新时间 2022-12-28 16:00:44

文档简介

26.2 实际问题与反比例函数 人教版九年级下册同步练习
一、单选题
1.(2021九上·东区期中)如果矩形的面积为6cm2,那么它的长ycm与宽xcm之间的函数关系用图象表示大致是(  )
A. B.
C. D.
【答案】C
【知识点】反比例函数的实际应用
【解析】【解答】解:由题意可知:(x>0)
∴y与x为反比例函数关系,且函数图象仅经过第一象限
符合题意的只有C
故先C.
【分析】根据矩形的面积先求出(x>0)可知y与x为反比例函数关系,据此判断即可.
2.(2021九上·乳山期中)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:)是反比例函数关系,它的图象如图所示.下列说法正确的是(  )
A.函数解析式为 B.蓄电池的电压是18V
C.当时, D.当时,
【答案】C
【知识点】待定系数法求反比例函数解析式;反比例函数的实际应用
【解析】【解答】解:设,将代入可得,故A不符合题意;
∴蓄电池的电压是36V,故B不符合题意;
当时,,该项符合题意;
当时,,故D不符合题意,
故答案为:C.
【分析】利用待定系数法求出函数解析式,再利用反比例函数的性质求解即可。
3.(2022九上·滁州期中)某电子产品的售价为8000元,购买该产品时可分期付款:前期付款3000元,后期每个月分别付相同的数额,则每个月付款额y(元)与付款月数x(x为正整数)之间的函数关系式是(  )
A. B.
C. D.
【答案】D
【知识点】列反比例函数关系式
【解析】【解答】由题意得:,
即,
故答案为:D.
【分析】根据题意直接列出函数解析式即可。
4.(2022·龙湾模拟)某气球内充满一定质量的气体,温度不变时,气球内气体的压强 与气体的体积 的关系是如图所示的反比例函数.当气球内气体的压强大于200kPa,气球就会爆炸.为了不让气球爆炸,则气球内气体的体积 需满足的取值范围是(  )
A. B. C. D.
【答案】D
【知识点】反比例函数的实际应用
【解析】【解答】解:设P与V的函数关系为P=,
∵当V=0.8时,P=125,
∴k=125×0.8=100,
∴P=,
∴当P=200时V=0.5,
∴当P≤200时,V≤0.5.
故答案为:D.
【分析】设P与V的函数关系为P=,把V=0.8,P=125代入解析式,求出k=100,再把P=200代入解析式求出V=0.5,根据反比例函数图象的性质即可得出答案.
5.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温y(℃)与开机后用时.x(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间x(min)的关系如图所示,水温从100℃降到35℃所用的时间是(  )
A.27min B.20min C.13min D.7min
【答案】C
【知识点】反比例函数的实际应用
【解析】【解答】解:设反比例函数关系式为:y=(k≠0),
将(7,100)代入y=y=,得k=700,
∴y=,
将y=35代入y=,解得x=20,
∴水温从100℃降到35℃所用的时间是:20﹣7=13分钟.
故答案为:C.
【分析】观察图象可知:7分钟时,水温为100℃,代入解析式求得k,从而得到反比例函数的解析式,再将y=35代入反比例函数解析式,求得此时的时间,再减去7分钟即可求得水温从100℃降到35℃所用的时间.
6.(2017·七里河模拟)教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的(  )
A.7:20 B.7:30 C.7:45 D.7:50
【答案】A
【知识点】反比例函数的实际应用
【解析】【解答】解:∵开机加热时每分钟上升10℃,
∴从30℃到100℃需要7分钟,
设一次函数关系式为:y=k1x+b,
将(0,30),(7,100)代入y=k1x+b得k1=10,b=30
∴y=10x+30(0≤x≤7),令y=50,解得x=2;
设反比例函数关系式为:y= ,
将(7,100)代入y= 得k=700,∴y= ,
将y=30代入y= ,解得x= ;
∴y= (7≤x≤ ),令y=50,解得x=14.
所以,饮水机的一个循环周期为 分钟.每一个循环周期内,在0≤x≤2及14≤x≤ 时间段内,水温不超过50℃.
逐一分析如下:
选项A:7:20至8:45之间有85分钟.85﹣ ×3=15,位于14≤x≤ 时间段内,故可行;
选项B:7:30至8:45之间有75分钟.75﹣ ×3=5,不在0≤x≤2及14≤x≤ 时间段内,故不可行;
选项C:7:45至8:45之间有60分钟.60﹣ ×2= ≈13.3,不在0≤x≤2及14≤x≤ 时间段内,故不可行;
选项D:7:50至8:45之间有55分钟.55﹣ ×2= ≈8.3,不在0≤x≤2及14≤x≤ 时间段内,故不可行.
综上所述,四个选项中,唯有7:20符合题意.
故答案为:A.
【分析】根据实际情况由开机加热时每分钟上升10℃,得到从30℃到100℃需要7分钟,设出一次函数关系式为y=k1x+b,将(0,30),(7,100)代入y=k1x+bk1=10,求出b=30,解得x=2;设反比例函数关系式为y= ,将(7,100)代入得k=700,得到解析式,求出饮水机的一个循环周期为的时间,每一个循环周期内,分时间段分析,得出结论.
二、填空题
7.设矩形的一组邻边长分别为x,y,面积是 (S为定值),当 时,矩形的周长为6,则 关于 的函数表达式是   ,自变量 的取值范围是   .
【答案】;
【知识点】列反比例函数关系式
【解析】【解答】解:∵矩形的周长为6,x=2,
∴2(x+y)=2(2+y)=6,
∴解得y=1,
∴S=xy=2×1=2,
∵面积是S,为定值,
∴y=(x>0).
故答案为:y=;x>0.
【分析】根据矩形周长公式,求得x=2时,y=1,再根据面积是S是定值,可列出y关于x的表达式,及求得x>0,即可解决问题.
8.油箱注满 升油后,轿车可行驶的总路程 (单位:千米)与平均耗油量 (单位:升/千米)之间是反比例函数关系 ( 是常数, .已知某轿车油箱注满油后,以平均耗油量为每千米0.1升的速度行驶,可行驶700千米.则该轿车可行驶的总路程 与平均耗油量 之间的函数关系式为   .
【答案】
【知识点】列反比例函数关系式
【解析】【解答】解:由题意得
k=0.1×700=70,
∴s与t的函数解析式为.
故答案为:.
【分析】利用已知以平均耗油量为每千米0.1升的速度行驶,可行驶700千米,将a=0.1,S=700代入求出k的值,即可得到函数解析式.
9.(2022·山西)根据物理学知识,在压力不变的情况下,某物体承受的压强是它的受力面积的反比例函数,其函数图象如图所示,当时,该物体承受的压强p的值为    Pa.
【答案】400
【知识点】反比例函数的实际应用
【解析】【解答】解:设反比例函数的解析式为,
由图象得反比例函数经过点(0.1,1000),
∴,
∴反比例函数的解析式为,
当S=0.25时,.
故答案为:400
【分析】先求出反比例函数的解析式,再将S=0.25代入可得答案。
10.(2022九下·厦门月考)密闭容器内有一定质量的二氧化碳,在温度不变的情况下,当容器的体积V(单位:m3)变化时,气体的密度ρ(单位:kg/m3)随之变化,已知密度ρ是体积V的反比例函数关系,它的图象如图所示,则当ρ = 3.3 kg/m3时,相应的体积V是     m3.
【答案】3
【知识点】反比例函数的实际应用
【解析】【解答】解:设密度ρ与体积V的反比例函数解析式为ρ=,
把点(5,1.98)代入解ρ=,得k=9.9,
∴密度ρ与体积V的反比例函数解析式为ρ=,V>0.
当ρ = 3.3时,V==3,
即当ρ = 3.3 kg/m3时,相应的体积V是 3m3.
故答案为:3.
【分析】设密度ρ与体积V的反比例函数解析式为ρ=,把点(5,1.98)代入求出k的值,据此可得函数解析式,然后令ρ=3.3,求出V的值即可.
三、解答题
11.(2022·来安模拟)甲工程队新建公路,每名工人每天工作8小时,则甲工程队每天可完成600米新建公路.乙工程队比甲工程队少10名工人,每名工人每天工作10小时,则乙工程队每天可完成500米新建公路,假定甲、乙两工程队的每名工人每小时完成的工作量相同,求乙工程队的工人有多少名?
【答案】解:设乙工程队的工人有x名,由题意得

解得,经检验是原分式方程的解,且符合题意.
答:乙工程队的工人有20名.
【知识点】列反比例函数关系式
【解析】【分析】根据题意中工作量相同设方程,解出方程,检验得到答案
12.(2021八下·宝应期末)为了做好校园疫情防控工作,学校后勤每天对全校办公室和教室进行药物喷洒消毒,完成1间教室的药物喷洒要5min,药物喷洒时教室内空气中的药物浓度 (单位: )与时间 (单位:min)的函数关系式为 ,其图象为图中线段 ,药物喷洒完成后 与 成反比例函数关系,两个函数图象的交点为 ,当教室空气中的药物浓度不高于 时,对人体健康无危害,如果后勤人员依次对一班至十一班教室(共11间)进行药物喷洒消毒当最后一间教室药物喷洒完成后,一班能否能让人进入教室?请通过计算说明.
【答案】解:∵完成1间教室药物喷洒需要5min,
∴完成11间教室药物喷洒需要55min,
∵当 时, ,
∴ ,
设反比例函数解析式为 ,
把 代入解析式得: ,
∴反比例函数解析式为 ,
∴当 时, ,
∴一班学生能进入教室.
【知识点】反比例函数的实际应用
【解析】【分析】由题意可得完成11间教室药物喷洒需要55min,将x=5代入函数关系式中可得y的值,据此可得点A的坐标,设反比例函数解析式为 ,代入点A坐标可得k的值,据此可得反比例函数解析式,令x=55,求出y的值,与1进行比较即可.
1 / 126.2 实际问题与反比例函数 人教版九年级下册同步练习
一、单选题
1.(2021九上·东区期中)如果矩形的面积为6cm2,那么它的长ycm与宽xcm之间的函数关系用图象表示大致是(  )
A. B.
C. D.
2.(2021九上·乳山期中)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:)是反比例函数关系,它的图象如图所示.下列说法正确的是(  )
A.函数解析式为 B.蓄电池的电压是18V
C.当时, D.当时,
3.(2022九上·滁州期中)某电子产品的售价为8000元,购买该产品时可分期付款:前期付款3000元,后期每个月分别付相同的数额,则每个月付款额y(元)与付款月数x(x为正整数)之间的函数关系式是(  )
A. B.
C. D.
4.(2022·龙湾模拟)某气球内充满一定质量的气体,温度不变时,气球内气体的压强 与气体的体积 的关系是如图所示的反比例函数.当气球内气体的压强大于200kPa,气球就会爆炸.为了不让气球爆炸,则气球内气体的体积 需满足的取值范围是(  )
A. B. C. D.
5.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温y(℃)与开机后用时.x(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间x(min)的关系如图所示,水温从100℃降到35℃所用的时间是(  )
A.27min B.20min C.13min D.7min
6.(2017·七里河模拟)教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的(  )
A.7:20 B.7:30 C.7:45 D.7:50
二、填空题
7.设矩形的一组邻边长分别为x,y,面积是 (S为定值),当 时,矩形的周长为6,则 关于 的函数表达式是   ,自变量 的取值范围是   .
8.油箱注满 升油后,轿车可行驶的总路程 (单位:千米)与平均耗油量 (单位:升/千米)之间是反比例函数关系 ( 是常数, .已知某轿车油箱注满油后,以平均耗油量为每千米0.1升的速度行驶,可行驶700千米.则该轿车可行驶的总路程 与平均耗油量 之间的函数关系式为   .
9.(2022·山西)根据物理学知识,在压力不变的情况下,某物体承受的压强是它的受力面积的反比例函数,其函数图象如图所示,当时,该物体承受的压强p的值为    Pa.
10.(2022九下·厦门月考)密闭容器内有一定质量的二氧化碳,在温度不变的情况下,当容器的体积V(单位:m3)变化时,气体的密度ρ(单位:kg/m3)随之变化,已知密度ρ是体积V的反比例函数关系,它的图象如图所示,则当ρ = 3.3 kg/m3时,相应的体积V是     m3.
三、解答题
11.(2022·来安模拟)甲工程队新建公路,每名工人每天工作8小时,则甲工程队每天可完成600米新建公路.乙工程队比甲工程队少10名工人,每名工人每天工作10小时,则乙工程队每天可完成500米新建公路,假定甲、乙两工程队的每名工人每小时完成的工作量相同,求乙工程队的工人有多少名?
12.(2021八下·宝应期末)为了做好校园疫情防控工作,学校后勤每天对全校办公室和教室进行药物喷洒消毒,完成1间教室的药物喷洒要5min,药物喷洒时教室内空气中的药物浓度 (单位: )与时间 (单位:min)的函数关系式为 ,其图象为图中线段 ,药物喷洒完成后 与 成反比例函数关系,两个函数图象的交点为 ,当教室空气中的药物浓度不高于 时,对人体健康无危害,如果后勤人员依次对一班至十一班教室(共11间)进行药物喷洒消毒当最后一间教室药物喷洒完成后,一班能否能让人进入教室?请通过计算说明.
答案解析部分
1.【答案】C
【知识点】反比例函数的实际应用
【解析】【解答】解:由题意可知:(x>0)
∴y与x为反比例函数关系,且函数图象仅经过第一象限
符合题意的只有C
故先C.
【分析】根据矩形的面积先求出(x>0)可知y与x为反比例函数关系,据此判断即可.
2.【答案】C
【知识点】待定系数法求反比例函数解析式;反比例函数的实际应用
【解析】【解答】解:设,将代入可得,故A不符合题意;
∴蓄电池的电压是36V,故B不符合题意;
当时,,该项符合题意;
当时,,故D不符合题意,
故答案为:C.
【分析】利用待定系数法求出函数解析式,再利用反比例函数的性质求解即可。
3.【答案】D
【知识点】列反比例函数关系式
【解析】【解答】由题意得:,
即,
故答案为:D.
【分析】根据题意直接列出函数解析式即可。
4.【答案】D
【知识点】反比例函数的实际应用
【解析】【解答】解:设P与V的函数关系为P=,
∵当V=0.8时,P=125,
∴k=125×0.8=100,
∴P=,
∴当P=200时V=0.5,
∴当P≤200时,V≤0.5.
故答案为:D.
【分析】设P与V的函数关系为P=,把V=0.8,P=125代入解析式,求出k=100,再把P=200代入解析式求出V=0.5,根据反比例函数图象的性质即可得出答案.
5.【答案】C
【知识点】反比例函数的实际应用
【解析】【解答】解:设反比例函数关系式为:y=(k≠0),
将(7,100)代入y=y=,得k=700,
∴y=,
将y=35代入y=,解得x=20,
∴水温从100℃降到35℃所用的时间是:20﹣7=13分钟.
故答案为:C.
【分析】观察图象可知:7分钟时,水温为100℃,代入解析式求得k,从而得到反比例函数的解析式,再将y=35代入反比例函数解析式,求得此时的时间,再减去7分钟即可求得水温从100℃降到35℃所用的时间.
6.【答案】A
【知识点】反比例函数的实际应用
【解析】【解答】解:∵开机加热时每分钟上升10℃,
∴从30℃到100℃需要7分钟,
设一次函数关系式为:y=k1x+b,
将(0,30),(7,100)代入y=k1x+b得k1=10,b=30
∴y=10x+30(0≤x≤7),令y=50,解得x=2;
设反比例函数关系式为:y= ,
将(7,100)代入y= 得k=700,∴y= ,
将y=30代入y= ,解得x= ;
∴y= (7≤x≤ ),令y=50,解得x=14.
所以,饮水机的一个循环周期为 分钟.每一个循环周期内,在0≤x≤2及14≤x≤ 时间段内,水温不超过50℃.
逐一分析如下:
选项A:7:20至8:45之间有85分钟.85﹣ ×3=15,位于14≤x≤ 时间段内,故可行;
选项B:7:30至8:45之间有75分钟.75﹣ ×3=5,不在0≤x≤2及14≤x≤ 时间段内,故不可行;
选项C:7:45至8:45之间有60分钟.60﹣ ×2= ≈13.3,不在0≤x≤2及14≤x≤ 时间段内,故不可行;
选项D:7:50至8:45之间有55分钟.55﹣ ×2= ≈8.3,不在0≤x≤2及14≤x≤ 时间段内,故不可行.
综上所述,四个选项中,唯有7:20符合题意.
故答案为:A.
【分析】根据实际情况由开机加热时每分钟上升10℃,得到从30℃到100℃需要7分钟,设出一次函数关系式为y=k1x+b,将(0,30),(7,100)代入y=k1x+bk1=10,求出b=30,解得x=2;设反比例函数关系式为y= ,将(7,100)代入得k=700,得到解析式,求出饮水机的一个循环周期为的时间,每一个循环周期内,分时间段分析,得出结论.
7.【答案】;
【知识点】列反比例函数关系式
【解析】【解答】解:∵矩形的周长为6,x=2,
∴2(x+y)=2(2+y)=6,
∴解得y=1,
∴S=xy=2×1=2,
∵面积是S,为定值,
∴y=(x>0).
故答案为:y=;x>0.
【分析】根据矩形周长公式,求得x=2时,y=1,再根据面积是S是定值,可列出y关于x的表达式,及求得x>0,即可解决问题.
8.【答案】
【知识点】列反比例函数关系式
【解析】【解答】解:由题意得
k=0.1×700=70,
∴s与t的函数解析式为.
故答案为:.
【分析】利用已知以平均耗油量为每千米0.1升的速度行驶,可行驶700千米,将a=0.1,S=700代入求出k的值,即可得到函数解析式.
9.【答案】400
【知识点】反比例函数的实际应用
【解析】【解答】解:设反比例函数的解析式为,
由图象得反比例函数经过点(0.1,1000),
∴,
∴反比例函数的解析式为,
当S=0.25时,.
故答案为:400
【分析】先求出反比例函数的解析式,再将S=0.25代入可得答案。
10.【答案】3
【知识点】反比例函数的实际应用
【解析】【解答】解:设密度ρ与体积V的反比例函数解析式为ρ=,
把点(5,1.98)代入解ρ=,得k=9.9,
∴密度ρ与体积V的反比例函数解析式为ρ=,V>0.
当ρ = 3.3时,V==3,
即当ρ = 3.3 kg/m3时,相应的体积V是 3m3.
故答案为:3.
【分析】设密度ρ与体积V的反比例函数解析式为ρ=,把点(5,1.98)代入求出k的值,据此可得函数解析式,然后令ρ=3.3,求出V的值即可.
11.【答案】解:设乙工程队的工人有x名,由题意得

解得,经检验是原分式方程的解,且符合题意.
答:乙工程队的工人有20名.
【知识点】列反比例函数关系式
【解析】【分析】根据题意中工作量相同设方程,解出方程,检验得到答案
12.【答案】解:∵完成1间教室药物喷洒需要5min,
∴完成11间教室药物喷洒需要55min,
∵当 时, ,
∴ ,
设反比例函数解析式为 ,
把 代入解析式得: ,
∴反比例函数解析式为 ,
∴当 时, ,
∴一班学生能进入教室.
【知识点】反比例函数的实际应用
【解析】【分析】由题意可得完成11间教室药物喷洒需要55min,将x=5代入函数关系式中可得y的值,据此可得点A的坐标,设反比例函数解析式为 ,代入点A坐标可得k的值,据此可得反比例函数解析式,令x=55,求出y的值,与1进行比较即可.
1 / 1