m一5=一3<0,.当专项训练:1.C2.B3.k-14.D5.66.2
为-6≤x<0或x≥2.9.解:(1),双曲线
参考答案
<.②k=m-5=一3<0,当x<,<0或0<
7.解:(1):CA=CO,.Saw=S△eD·.S△A0n=2SaaD=
<时,y随x的增大而增大,M<为:当<0<时
为=”(m>0)过点C1,2)和D2,
18.
(2)rCA=C0.A(a,b),∴C(2a2b).k=ab.
>0>,8.解:1)把点(2,-1)代人y=冬可得k
2=”
第二十六章反比例函数
-2,.一次函数y=-2x十6.∴把点(2,-1)代人得-4十
b
,当x=a时y=6.D(a,b)
解得”反比例函数的解析
n=2
26.1反比例函数
b=一1.解得b=3.(2)由(1)可得反比例函数解析式为
26.1.1反比例函数
2,则有k<0,在每个分支上,y随x的增大而增
(3)Sam=Sam+SaD.=18十·a·}b
式为为=是.:直线为=k红十6过点C1,2)和D(2,1
课前预习:1.反比例函数xy不等于0的一切实数
大..当>0时,如图①.∴由图象可得>>.当a<
ab=48.∴k=4ab=12.
/6+6=2,
2.(1)y=冬(k≠0)(2)xy=k(k≠0)(3)y=kx(k≠0)
0时,如图②..由图象可得0
26名解得{1一次函数的解析式为
16=3.
时,>>为:当a<0时,专题二反比例函数与特殊的几何图形
-x+3.(2)当x=0时,y=3,即B(0,3).OB=3.如
当管训练:1.D2C3-号是4-35.C6,A
专项训练:1.D2.-63.解:(1)如图,过点C作CE⊥AB
图,过点D作DE⊥y轴于点E.:D(2,1),DE=2.
于点E.,CA=CB,.EB=2.:BC=CE+BE,∴CE=
1y2四品y生9解,1设丽数关系式为y=产
Sw=20B·DE=X3×2=3.10.解:1)将点
20A=4C点的坐标为(号,2).k=5.
3
把x=一1,y=3代人,解得k=一9,即函数关系式为y
A(1,2)代人y=”,得m=2∴y=名.当y=-1时x
-2(2)当x=5时y=-3.
(2):BD=BC,AB=4,∴DA=4-号=号.设C(,2),则
-2,.B(-2,-1).将A(1,2),B(-2,-1)代人y=kx十
①
课后作业:1,B2.B3.C4.D5.16.-27.S=分
D(+三,2)k=2=(+2)×号.t=号
〔第8题图)
(第9题因)
6:得。一1.解得公二y-十1一次两数的
9.解:(1)如图,延长BC与x轴交于点D.A(1,3),BC=
解析式为y一x十1,反比例函数的解析式为y=名
(2)在
2,AB∥x轴,BC⊥AB,CD=1.:点A在y=上,
C(号,2.0c=√(号)+2=
y=x十1中,当y=0时,x十1=0,解得x=一1,∴.C(一1,
m=1.(2由题意,得r十2m≠0,
∫m≠0且m≠-2.
{+m-1=2,m==1生E
…k=3.y=
是当y=1时1=三,x=3.点C的坐
0).设P(m,0),则PC=|-1-m,:S△=号·PC·
标为(3,1.(2)C(3,1),B(3,3).3=.k=9.
1=42×-1-m×2=4,解得m=3或m=-5,
六m=-1士区.(3)由题意,得m士2m≠0:
m2十m-1=-1,
“点B所在图象的两数解析式为y-是
(第3题图)
∴点P的坐标为(3,0)或(-5,0).
11.解:(1)将直线1的
(第
题图
:.m≠0且m≠-2m=-1.9.解:1)y关于x的函
解析式与反比例函数的解析式联立并整理得x:一5x十三
1m1=0,2=-1.
第2课时反比例函数的图象和性质(2)
4.A5.y=12
6.解:(1)由题意,得D(1,4).反比例函
0,由题意得△=25一4≥0,解得≤5,故k的取值范围为
数解析式为y=
.(2)当x=2时,y=18=9.(3)当
课前预习:1.令2,方程组交点坐标解集
数=(x>0)的图象经过点D,∴k=4.反比例函数的
0(2)设点A(m,一m十5),而x2一x=3,则点
y=3时,x=18=8=6.10.解:设为=kx,为=
当堂训练:1.C2.C3.一124.解:(1)反比例函数y
解析式为y=兰(>0).当x=2时y=2,E(2,2).再由
B(m十3,一m十2),点A,B都在反比例函数的图象上,故
上的图象经过点A(4,b),ABLx轴于点B,△A0B的面积
D(1,4)和E(2,2)求得直线DE的解析式为y=一2x十6.
m(
m十5)=(m十3)(
m十2),解得m=1,故点A,B的坐
y=kx+.当x=一1时,y=一1:当x=3时,y=5,
为2,.与0B·AB=2,即分×4·b=2.六6=1.A点的
(2)如图,作点D关于y轴的对称点D',连接DE交y轴于
标分别为(1,4),(4,1):将点A的坐标代入反比例函数解析
-1=-小=子
点P,连接PD,此时,△PDE的周长最小.,D(1,4),
坐标为(4,1).k=xy=4.k=4,b=1.(2)A(4,1)在
式并解得=4X1=4,观察函数图象知,当一x+5<时,
5=3+.
=-
y=4x
∴.D'(-1,4).设直线DE的解析式为y=ax+b,把D(-1
一次函数y=ax一3的图象上,.1=4a一3..a=1..这个
04.
次函数的解析式为y
-3.5.B6.C7.38.-2
4),E(2,2)代人求得直线DE的解析式为y=-子x+9
26.2实际问题与反比例函数
11.解:y与x是成反比例函数关系,理由如下::(x一2y)产=
课后作业:1.A2.D3.B4.x1=1,x:=25.2≤y<6
(x十2y)+10,x-4xy十4y=x+4xy十4y+10.整理
6.97.解:1)将点B(3,-2)代人为=”中,得-2=
令x=0,得y=1”.点P的坐标为(0,0).(3)5+丽
第1课时实际问题与反比例函数(1)
课前预习:1.反比例函数2.自变量
得8xy=一10.小y=42.y成反比例函数关系,比例系
专题三反比例函数与一次函数的综合
则m=一6,∴反比例函数的解析式为y=二6.当x=一1
专项训练:1.A2.B3.D4.A5.36.607.解:(1)4
当室训练:1.A2.B3.C4y=25806y=9
数为一·
(x>0)7.61008.解:(1)由图可知:此蓄水池的蓄水
时,y=n=6,.A(-1,6).由A(-1,6),B(3,-2)求得一次
2(2)把A(1,4),B(2,2)代入=kx+b,得
26.1.2反比例函数的图象和性质
函数解析式为y=一2x十4,(2)点P的坐标为(1,0)或
(合。.得=一26=6,-次函数的解折式是为
量为4×12=48(m).(2)V=48.(3)当1=6时,V=8.
第1课时反比例函数的图象和性质(1)
-2x十6.由图象可知:y<时x的取值范围是1即每小时的排水量是8m,
课前预习:1.双曲线2.(1)一,三减小(2)二、四增
8.0、8解:1油慝意,得以钟。一2解得合2
1b=2.
课后作业:1.A2.D3.640004.解:(1)将点A(40,1)
大3.轴对称中心对称
·一次函数的解析式为=x十2.“反比例函数为=的
(3)28.解:(1)将点A(2,3)代入反比例函数y=2中,得
代人1=名,得1=奇=40.4=9将点B(m,05)代
当堂训练:1.D2.A3.C4.D5.B6,A7.y=
1
图象经过点D(2,4),=8.反比例函数的解析式为
k=6反比例函数的解新式为y=。当y=-1时=
(答案不唯一)8.-69.>10.解:(1)把x=2,y=-1
,(2)由>0,得x十2>0,x>-2..当x
a=-6,.B(-6,-1).将A(2,3),B(-6,-1)代入一次函
人1=9得0.5=m=80.k=40m=80,(2)当
代入y2+的左右两边,解得及=一(2):在这个
一2时,y>0.(3)x<一4或0:y=k,x十b中,求得1=2'.一次函数的解析式为
0=60时1=8-=号“=40>0当>0时1随0的增
函数图象所在的每个象限内,y随x的增大而减小,∴2k十
意,得D2,3)∴3=2m.1-2m=6.反比例函数的
6=2.
大而诚小.:≤60,≥三.汽车通过该路段最少需要
1>0.解得k>一之
解析式为=
(2)当x<-1-√5或0之x+2。(2)点P在一次函数y=立x十2的图象上,理
号k.5,解:1)设当20≤x≤45时,反比例函数的解析式
课后作业1.C2D3B4<05y兰6.<
时,<
由:当x=一2时,y=2X(一2)十2=1.…点P在一次函
n=-3×(-1),
专题一反比例函数中k的几何意义
为y,将C(20,45)代入得45=20,解得=900,反比
7.解:(1)由题意,得
nm-5
/3,
(2)①k=
方法指导:1.皮面积2.k之
数y=x+2的图象上,(3)不等式x十b≥:的解集
-1
、=2.
例函数的解折式为y-9当x=45时y-罗=20,
九年级数学·RJ·下册·10329.3课题学习
制作立体模型
课前预习
预习新知
知识点2由三视图制作立体图形
观察几何体的展开图或三视图,并综合考虑展开
7.如图是某个几何体的三视图,该几何体是
图各部分或各视图表达的含义以及它们之间的
联系,可以想象出这个几何体的形状,并进行相
A.长方体
B.三棱柱
应的操作,
C.正方体
D.圆柱
当堂训练
巩因菇础
知识点1由表面展开图制作立体图形
1.把如图所示的三棱柱展开,所得到的展开图是
(第7题图)
(第8题图)
8.
与如图所示的三视图对应的儿何体是
9.如图,一几何体的三视图如下,那么这个儿何
体是
主视剡
东视图
视图
(第1题图)
(第2题图)
10.一个几何体的三视图如图所示,这个几何体
2.(泰州)一个几何体的表面展开图如图所示,则
的侧面积为
这个几何体是
()
A.四棱锥
B.四棱柱
C.三棱锥
D.三棱柱
3.如图所示的平面图形可以制作的立体图形是
主视图
左视图
俯视图
11.长城酒店大堂经理准备在前门台阶铺上红色
地毯,下面是当时修建台阶时的图纸。
(1)画出该台阶的实物模型:
(第3题图
(第4题图)
(第5题图)
(2)若红地毯每平方米50元,那么铺红地毯
4.如图所示的平面图形可以制作的立体图形是
需要多少钱?
5.如图所示的平面图形可以制作的立体图形是
-61+
一61+
主视图
正视.到
6.如图是一个食品包装盒的侧面展开图,
(1)请写出这个包装盒的多面体形状的名称:
(2)请根据图中所标的尺寸,计算这个多面体
的侧面积和全面积(全面积等于侧面积与
俯视
两个底面积之和)
73
课后作业
全面规升
1.用马铃薯制成的立体模型,有四个面是全等的
长方形,两个面是全等的正方形,长方形的宽
从止血看从东山石从上山石
等于正方形的边长,则这个立体模型的三视图
①
②
是
()
B
D
2.
下列四个图形中,是三棱锥的表面展开图的是
A
B
D
7.如图是三个几何体的三视图和展开图,请将同
3.某正方体的每个面上都有一个汉字,如图是它
一个几何体的三视图和展开图连线:
的一种表面展开图,那么在原正方体中,与
“中”字所在面相对面上的汉字是
口
+视图例怪
+欲怪到
十图圈平抄
A.国
B.产
C.党
D.好
△
国共
例树
评祝冬
响洲肉
光好
显
A
B
(第3题图)
(第4题图)
4.(江西)如图所示,正方体的展开图为
超越自我
■居■居■层■县■
8.已知某物品的设计三视图(单位:mm)如图所
示,用硬纸板制作这一实物模型,并计算这件
物品的体积和表面积。
5.如图所示的图形中,是正方体的表面展开图的
有
(填序号).
⑥
】直径100
6.如图是某几何体从三个不同方向所看到的
图形.
(1)说出这个几何体的名称;
(2)画出它的一种表面展开图;
(3)若图①的长为15cm,宽为4cm;图②的宽
为3cm:图③中直角三角形的斜边长为
5cm,试求这个几何体的所有棱长的和是
多少?它的侧面积是多大?
74