圆锥曲线教案[全章][上学期]

文档属性

名称 圆锥曲线教案[全章][上学期]
格式 rar
文件大小 1.4MB
资源类型 教案
版本资源 人教新课标B版
科目 数学
更新时间 2008-02-06 10:44:00

文档简介

高中数学教案 第8章圆锥曲线方程(第7课时) 战永捷
课 题:8.2椭圆的简单几何性质(四)
教学目的:
1. 了解椭圆的参数方程,了解参数方程中系数的含义.
2.通过学习椭圆的参数方程,进一步完善对椭圆的认识,理解参数方程与普通方程的相互联系.并能相互转化.提高综合运用能力
教学重点:进一步巩固和掌握由曲线求方程及由方程研究曲线的方法及椭圆参数方程的推导.
教学难点:深入理解推导方程的过程.灵活运用方程求解问题.
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹
2.标准方程:, ()
3.椭圆的性质:由椭圆方程()
(1)范围: ,,椭圆落在组成的矩形中.
(2)对称性:图象关于轴对称.图象关于轴对称.图象关于原点对称原点叫椭圆的对称中心,简称中心.轴、轴叫椭圆的对称轴.从椭圆的方程中直接可以看出它的范围,对称的截距
(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点
椭圆共有四个顶点: ,加两焦点共有六个特殊点. 叫椭圆的长轴,叫椭圆的短轴.长分别为 分别为椭圆的长半轴长和短半轴长.椭圆的顶点即为椭圆与对称轴的交点
(4)离心率: 椭圆焦距与长轴长之比
椭圆形状与的关系:,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在时的特例 椭圆变扁,直至成为极限位置线段,此时也可认为圆为椭圆在时的特例
4.椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个内常数,那么这个点的轨迹叫做椭圆 其中定点叫做焦点,定直线叫做准线,常数就是离心率
椭圆的第二定义与第一定义是等价的,它是椭圆两种不同的定义方式
5.椭圆的准线方程
对于,左准线;右准线
对于,下准线;上准线
焦点到准线的距离(焦参数)
椭圆的准线方程有两条,这两条准线在椭圆外部,与短轴平行,且关于短轴对称
6.椭圆的焦半径公式:(左焦半径),(右焦半径),其中是离心率 焦点在y轴上的椭圆的焦半径公式: ( 其中分别是椭圆的下上焦点)
焦半径公式的两种形式的区别只和焦点的左右有关,而与点在左在右无关 可以记为:左加右减,上减下加
二、讲解新课:
1.问题:如图,以原点O为圆心,分别以 ()为半径作两个图,点B是大圆半径OA与小圆的交点,过点A作NA⊥OX垂足为N,过点B作BM⊥AN,垂足为M.求当半径OA绕点O旋转时点M的轨迹的参数方程
解答:设A的坐标为,取 为参数,那么
也就是
这就是所求点A的轨迹的参数方程
将变形为
发现它可化为,说明A的轨迹是椭圆
2.椭圆的参数方程 注意:角不是角
三、讲解范例:
例1把下列参数方程化为普通方程,普通方程化为参数方程
(1) (2)
解:(1)
(2)
例2 已知椭圆上的点P(),求的取值范围.
解:=
例3 已知椭圆与轴的正半轴交于A,O是原点,若椭圆上存在一点M,使MA⊥MO,求椭圆离心率的取值范围
解:A(,0),设M点的坐标为(),由MA⊥MO得
化简得
所以
四、课堂练习:
1.参数方程表示的曲线的焦点坐标是: 离心率是:
答案:;
2.求椭圆的内接矩形面积的最大值
答案:
五、小结 :
椭圆的参数方程及形式,与普通方程的互化 椭圆的参数方程的应用
六、课后作业:
七、板书设计(略)
八、课后记:
图们市三高中 第 1页(共4页)高中数学教案 第8章圆锥曲线方程(第10课时) 王新敞
课 题:8.4双曲线的简单几何性质 (一)
教学目的:
1.使学生掌握双曲线的范围、对称性、顶点、渐近线等几何性质
2.掌握标准方程中的几何意义
3.并使学生能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题
教学重点:双曲线的渐近线及其得出过程
教学难点:渐近线几何意义的证明
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
内容分析:
?本节知识是讲完了双曲线及其标准方程之后,反过来利用双曲线的方程研究双曲线的几何性质 它是教学大纲要求学生必须掌握的内容,也是高考的一个考点 用坐标法研究几何问题,是数学中一个很大的课题,它包含了圆锥曲线知识的众多方面,这里对双曲线的几何性质的讨论以及利用性质来解题即是其中的一个重要部分
坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在第8章知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
利用图形启发引导学生理解渐近线的几何意义、弄通证明的关键;渐近线的位置、渐近线与双曲线张口之间的关系是学生学习离心率的概念、搞懂离心率与双曲线形状之间的关系的关键;要突破第二定义得出过程这个难点
本节内容类似于“椭圆的简单的几何性质”,教学中也可以与其类比讲解,主要应指出它们的联系与区别 对圆锥曲线来说,渐近线是双曲线特有的性质,我们常利用它作出双曲线的草图,为说明这一点,教学时可以适当补充一些例题和习题 讲解完双曲线的渐近线后,要注意说明:反过来以为渐近线的双曲线方程则是
对双曲线离心率进行教学时要指明它的大小反映的是双曲线的张口大小,而椭圆离心率的大小反映的是椭圆的扁平程度 同椭圆一样,双曲线有两种定义,教材上以例3的教学来引出它,我们讲课时要充分注意到此例题与后面的定义在教学上的逻辑关系,突出考虑学生认知心理的变化规律
本节分三个课时:第一课时主要讲解双曲线的范围、对称性、顶点、渐近线等几何性质,并补充一道变式例题;第二课时主要内容为离心率、教材中的例1、例2及一道变式例题;第三课时主要讲解教材中的例3、双曲线另一个定义、准线概念
教学过程:
一、复习引入:
名 称 椭 圆 双 曲 线
图 象
定 义 平面内到两定点的距离的和为常数(大于)的动点的轨迹叫椭圆。即 当2﹥2时,轨迹是椭圆, 当2=2时,轨迹是一条线段 当2﹤2时,轨迹不存在 平面内到两定点的距离的差的绝对值为常数(小于)的动点的轨迹叫双曲线。即当2﹤2时,轨迹是双曲线当2=2时,轨迹是两条射线当2﹥2时,轨迹不存在
标准方 程 焦点在轴上时: 焦点在轴上时: 注:是根据分母的大小来判断焦点在哪一坐标轴上 焦点在轴上时: 焦点在轴上时:注:是根据项的正负来判断焦点所在的位置
常数的关 系 (符合勾股定理的结构), 最大, (符合勾股定理的结构)最大,可以
二、讲解新课:
1.范围、对称性
由标准方程可得,当时,y才有实数值;对于y的任何值,x都有实数值 这说明从横的方向来看,直线x=-a,x=a之间没有图象,从纵的方向来看,随着x的增大,y的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线
双曲线不封闭,但仍称其对称中心为双曲线的中心
2.顶点
顶点: 特殊点:
实轴:长为2a, a叫做半实轴长 虚轴:长为2b,b叫做虚半轴长
讲述:结合图形,讲解顶点和轴的概念,在双曲线方程中,令y=0得,故它与x轴有两个交点,且x轴为双曲线的对称轴,所以与其对称轴的交点,称为双曲线的顶点(一般而言,曲线的顶点均指与其对称轴的交点),而对称轴上位于两顶点间的线段叫做双曲线的实轴长,它的长是2a.
在方程中令x=0得,这个方程没有实数根,说明双曲线和Y轴没有交点。但Y轴上的两个特殊点,这两个点在双曲线中也有非常重要的作用 把线段叫做双曲线的虚轴,它的长是2b 要特别注意不要把虚轴与椭圆的短轴混淆
双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异
3.渐近线
过双曲线的两顶点,
作Y轴的平行线,经过
作X轴的平行线,四条直线围
成一个矩形 矩形的两条对角线所在
直线方程是(),
这两条直线就是双曲线的渐近线
分析:要证明直线()
是双曲线的渐近线,即要证明
随着X的增大,直线和曲线越来越靠拢
也即要证曲线上的点到直线的距离|MQ|
越来越短,因此把问题转化为计算|MQ|
但因|MQ|不好直接求得,因此又把问题
转化为求|MN| 最后强调,对圆锥曲线
而言,渐近线是双曲线具有的性质

()
4.等轴双曲线
a=b即实轴和虚轴等长,这样的双曲线叫做等轴双曲线
结合图形说明:a=b时,双曲线方程变成(或,它的实轴和都等于2a(2b),这时直线围成正方形,渐近线方程为 它们互相垂直且平分双曲线的实轴和虚轴所成的角
5.共渐近线的双曲线系
如果已知一双曲线的渐近线方程为,那么此双曲线方程就一定是:或写成
6.双曲线的草图
利用双曲线的渐近线,可以帮助我们较准确地画出双曲线的草图
具体做法是:画出双曲线的渐近线,先确定双曲线的顶点及第一象限内任意一点的位置,然后过这两点并根据双曲线在第一象限从渐近线下方逐渐接近渐近线的特点画出双曲线的一部分,最后利用双曲线的对称性画出完整的双曲线
三、讲解范例:
例1 求双曲线的顶点坐标、焦点坐标,实半轴长、虚半轴长和渐近线方程,并作出草图
分析:只要紧扣有关概念和方法,就易解答
解:把方程化为标准方程
由此可知,实半轴长a=1,虚半轴长b=2.
顶点坐标是(-1,0),(1,0)
焦点的坐标是(-,0),(,0).
渐近线方程为,即
例2 求与双曲线共渐近线且过的双曲线的方程
分析:因所求的双曲线与已知双曲线共渐近线,故可先设出双曲线系,再把已知点代入,求得K的值即可
解:设与共渐近线且过的
双曲线的方程为
则 ,从而有
所求双曲线的方程为
四、课堂练习:
1.下列方程中,以x±2y=0为渐近线的双曲线方程是
答案:A
2.过点(3,0)的直线与双曲线4x2-9y2=36只有一个公共点,则直线共有
(A)1条 (B)2条 (C)3条 (D)4条
答案:C
翰3.若方程=1表示双曲线,其中a为负常数,则k的取值范围是( )
(A)(,-) (B)(,-) (C)(-,) (D)(-∞,)∪(-,+∞)翰林汇
答案:B
4.中心在原点,一个焦点为(3,0),一条渐近线方程2x-3y=0的双曲线方程是
(A) (B)
(C) (D)
答案:A
5.与双曲线有共同的渐近线,且一顶点为(0,9)的双曲线的方程是( )
(A) (B)
(C) (D)
答案:D
翰林汇6.一双曲线焦点的坐标、离心率分别为(5,0)、,则它的共轭双曲线的焦点坐标、离心率分别是 ( )
(A)(0,5), (B)(0, (C)(0, (D)(0,
答案:A
7.双曲线2kx2-ky2=1的一焦点是F(0,4),则k等于 ( )
(A)-3/32 (B)3/32 (C)-3/16 (D)3/16
答案:A
五、小结 :双曲线的范围、对称性、中心、顶点、实轴和虚轴、实轴长、虚轴长、渐近线方程、等轴双曲线;双曲线草图的画法;双曲线的渐近线是,但反过来此渐近线对应的双曲线则是
或写成
六、课后作业:
七、板书设计(略)
八、课后记:
新疆奎屯市第一高级中学 第 7页(共7页)第八章 圆锥曲线方程 教案(共18课时)
第8章圆锥曲线方程教材分析
高中数学第8章圆锥曲线方程(第1课时)椭圆及其标准方程(1)
高中数学第8章圆锥曲线方程(第2课时)椭圆及其标准方程(2)
高中数学第8章圆锥曲线方程(第3课时)椭圆及其标准方程(3)
高中数学第8章圆锥曲线方程(第4课时)椭圆的简单几何性质(1)
高中数学第8章圆锥曲线方程(第5课时)椭圆的简单几何性质(2)
高中数学第8章圆锥曲线方程(第6课时)椭圆的简单几何性质(3)
高中数学第8章圆锥曲线方程(第7课时)椭圆的简单几何性质(4)
高中数学第8章圆锥曲线方程(第8课时)双曲线及其标准方程(1)
高中数学第8章圆锥曲线方程(第9课时)双曲线及其标准方程(2)
高中数学第8章圆锥曲线方程(第10课时)双曲线的简单几何性质(1)
高中数学第8章圆锥曲线方程(第11课时)双曲线的简单几何性质(2)
高中数学第8章圆锥曲线方程(第12课时)双曲线的简单几何性质(3)
高中数学第8章圆锥曲线方程(第13课时)抛物线及其标准方程(1)
高中数学第8章圆锥曲线方程(第14课时)抛物线及其标准方程(2)
高中数学第8章圆锥曲线方程(第15课时)抛物线的简单几何性质(1)
高中数学第8章圆锥曲线方程(第16课时)抛物线的简单几何性质(2)
高中数学第8章圆锥曲线方程(第17课时)小结与复习(1)
高中数学第8章圆锥曲线方程(第18课时)小结与复习(2)高中数学教案 第8章圆锥曲线方程(第11课时) 战永捷
课 题:8.4双曲线的简单几何性质 (二)
教学目的:
1.使学生掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质
2.掌握等轴双曲线,共轭双曲线等概念
3.并使学生能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题
4.通过教学使同学们运用坐标法解决问题的能力得到进一步巩固和提高,“应用数学”的意识等到进一步锻炼的培养
教学重点:双曲线的渐近线、离心率
教学难点:渐近线几何意义的证明,离心率与双曲线形状的关系
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.范围、对称性
由标准方程,从横的方向来看,直线x=-a,x=a之间没有图象,从纵的方向来看,随着x的增大,y的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线 双曲线不封闭,但仍称其对称中心为双曲线的中心
2.顶点
顶点:
特殊点:
实轴:长为2a, a叫做半实轴长
虚轴:长为2b,b叫做虚半轴长
双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异
3.渐近线
过双曲线的两顶点,作Y轴的平行线,经过作X轴的平行线,四条直线围成一个矩形 矩形的两条对角线所在直线方程是(),这两条直线就是双曲线的渐近线
4.等轴双曲线
定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线
等轴双曲线的性质:(1)渐近线方程为:;(2)渐近线互相垂直;(3)离心率
等轴双曲线可以设为:,当时交点在x轴,当时焦点在y轴上
5.共渐近线的双曲线系
如果已知一双曲线的渐近线方程为,那么此双曲线方程就一定是:或写成
6.双曲线的草图
具体做法是:画出双曲线的渐近线,先确定双曲线的顶点及第一象限内任意一点的位置,然后过这两点并根据双曲线在第一象限从渐近线下方逐渐接近渐近线的特点画出双曲线的一部分,最后利用双曲线的对称性画出完整的双曲线
二、讲解新课:
7.离心率
概念:双曲线的焦距与实轴长的比,叫做双曲线的离心率
范围:
双曲线形状与e的关系:

因此e越大,即渐近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔。由此可知,双曲线的离心率越大,它的开口就越阔
(1)双曲线的形状张口随着渐近线的位置变化而变化;
(2)渐近线的位置(倾斜)情况又受到其斜率制约
利用计算机动画先演示出“e的大小”与“开口的阔窄”的关系,能让学生对此变化规律先形成直观理解;然后再用代数方法边板书边推导,这样就可化难为易,使学生对此规律有更深刻清晰的理解 这样做将有助于实在本节的这个难点
8.离心率相同的双曲线
(1)计算双曲线的离心率;
(2)离心离为的双曲线一定是吗?举例说明 如果存在很多的话,它们能否用一个特有的形式表示呢?
(3)离心率为的双曲线有多少条?
分析:的关系式,并从中发现只要实现半轴和虚半轴各与a=2,b=3有相同的比k:1(k>0)的双曲线,其离心率e都是
9.共轭双曲线:以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线 如与
注意的区别:三量a,b,c中a,b不同(互换)c相同
通过分析曲线发现二者其具有相同的渐近线 此即为共轭之意
1) 性质:共用一对渐近线 双曲线和它的共轭双曲线的焦点在同一圆上
2) 确定双曲线的共轭双曲线的方法:将1变为-1
3) 共用同一对渐近线的双曲线的方程具有什么样的特征:可设为,当时交点在x轴,当时焦点在y轴上
三、讲解范例:
例1求双曲线的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.
解:把方程化为标准方程
由此可知,实半轴长a=4,虚半轴长b=3.
焦点的坐标是(0,-5),(0,5).
离心率
渐近线方程为,即
例2  双曲线型自然通风塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面,它的最小半径为12 m,上口半径为13 m,下口半径为25 m,高55m.选择适当的坐标系,求出此双曲线的方程(精确到1m).
分析:本题建立合适的坐标系是关键。注意到通风塔有三个特殊的截口圆:上口、下口、最小的一个截口。显然,最小截口圆的圆心是双曲线的中心,直径是双曲线的实轴,所以以最小截口直径所在直线为X轴,圆心为原点建立坐标系,则双曲线的方程具有最简单的形式。
解:如图所示,建立直角坐标系xOy,使小圆的直径AA′在x轴上,圆心与原点重合.这时,上、下口的直径CC′、BB′平行于x轴,且|CC′|=13×2(m),|BB′|=25×2(m).
设双曲线的方程为
令点C的坐标为(13,y),则点B的坐标为(25,y-55).因为点B、C在双曲线上,所以
① 且 ②
解方程组,得
(负值舍去)
代入方程①,得
化简得
19b2+275b-18150=0    ③
解方程③(使用计算器计算),得
b≈25(m).
所以所求双曲线方程为
点评: 这是一个有实际意义的题目.解这类题目时,首先要解决以下两个问题:(1)选择适当的坐标系;(2)将实际问题中的条件借助坐标系用数学语言表达出来.
四、课堂练习:
1.方程mx2+ny2+mn=0(m(A)(0,) (B)(0,) (C)(,0) (D)(,0)
翰林汇2.下列各对曲线中,即有相同的离心率又有相同渐近线的是 D
(A)-y2=1和-=1 (B)-y2=1和y2-=1
(C)y2-=1和x2-=1 (D)-y2=1和-=1
翰林汇3.与双曲线有共同的渐近线,且经过点A的双曲线的一个焦点到一条渐近线的距离是 (C )
(A)8 (B)4 (C)2 (D)1
翰林汇
4.以为渐近线,一个焦点是F(0,2)的双曲线方程为 ( A )
(A)(B) (C)(D)翰林汇
5.双曲线kx2+4y2=4k的离心率小于2,则k的取值范围是 ( C )
(A)(-∞,0) (B)(-3,0) (C)(-12,0) (D)(-12,1)翰林汇
6.已知平面内有一固定线段AB,其长度为4,动点P满足|PA|-|PB|=3,则|PA|的最小值为 D
(A)1.5 (B)3 (C)0.5 (D)3.5
翰林汇
7.已知双曲线b2x2-a2y2 = a2b2的两渐近线的夹角为2,则离心率e为(C )
(A)arcsin (B) (C) (D)tg2
8.一条直线与双曲线两支交点个数最多为 ( B )
(A)1 (B)2 (C)3 (D)4翰林汇
9.双曲线顶点为(2,-1),(2,5),一渐近线方程为3x-4y+c = 0,则准线方程为 ( D )
(A) (B) (C) (D)
10.与双曲线=1(mn<0)共轭的双曲线方程是 ( D )
(A) (B) (C) (D)翰林汇
五、小结 :解例2这类应用题时,首先要解决以下两个问题:(1)选择适当的坐标系(通常是把题中的特殊直线或线段放在坐标轴上,特殊点放在原点);(2)将实际问题中的条件借助于坐标系用数学语言表达出来(如把实物上的特殊点、线用坐标描述出来)
六、课后作业:?
七、板书设计(略)
八、课后记:
图们市三高中 第 1页(共6页)高中数学教案 第8章圆锥曲线方程(第2课时) 战永捷
课 题:8.1椭圆及其标准方程(二)
教学目的:
1.能正确运用椭圆的定义与标准方程解题;
2.学会用待定系数法与定义法求曲线的方程
教学重点:用待定系数法与定义法求曲线的方程
教学难点:待定系数法
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1 椭圆定义:
平面内与两个定点的距离之和等于常数(大于)的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距
注意:椭圆定义中容易遗漏的两处地方:(1)两个定点---两点间距离确定(2)绳长--轨迹上任意点到两定点距离和确定
在同样的绳长下,两定点间距离较长,则所画出的椭圆较扁(线段)两定点间距离较短,则所画出的椭圆较圆(圆)椭圆的形状与两定点间距离、绳长有关(为下面离心率概念作铺垫)
2.椭圆标准方程:
(1)
它所表示的椭圆的焦点在轴上,焦点是,中心在坐标原点的椭圆方程 其中
(2)
它所表示的椭圆的焦点在轴上,焦点是,中心在坐标原点的椭圆方程 其中
所谓椭圆标准方程,一定指的是焦点在坐标轴上,且两焦点的中点为坐标原点;在与这两个标准方程中,都有的要求,如方程就不能肯定焦点在哪个轴上;分清两种形式的标准方程,可与直线截距式类比,如中,由于,所以在轴上的“截距”更大,因而焦点在轴上(即看分母的大小)
二、讲解范例:
例1 求适合下列条件的椭圆的标准方程:
(1)两个焦点坐标分别是(-3,0),(3,0),椭圆经过点(5,0).
(2)两个焦点坐标分别是(0,5),(0,-5),椭圆上一点P到两焦点的距离和为26.
选题意图:该题训练焦点在不同坐标轴上的椭圆标准方程,考查关系掌握情况.
解:(1)∵椭圆的焦点在x轴上,所以设它的标准方程为:
∵,2c=6.


∴所求椭圆的方程为:.
(2)∵椭圆的焦点在y轴上,所以设它的标准方程为
.

∴所求椭圆方程为:
例2 求适合下列条件的椭圆的标准方程.
(1)焦点在轴上,且经过点(2,0)和点(0,1).
(2)焦点在轴上,与轴的一个交点为P(0,-10),P到它较近的一个焦点的距离等于2.
选题意图:训练待定系数法求方程的思想方法,考查椭圆上离焦点最近的点为长轴一端点等基本知识.
解:(1)因为椭圆的焦点在轴上,所以可设它的标准方程为:
∵椭圆经过点(2,0)和(0,1)

故所求椭圆的标准方程为
(2)∵椭圆的焦点在轴上,所以可设它的标准方程为:
∵P(0,-10)在椭圆上,∴=10.
又∵P到它较近的一焦点的距离等于2,
∴-c-(-10)=2,故c=8.
∴.
∴所求椭圆的标准方程是.
说明:(1)标准方程决定的椭圆中,与坐标轴的交点横坐标(或纵坐标)实际即为与的值.
(2)后面的学习中将证明椭圆长轴端点距焦点最远或最近.
例3 已知椭圆经过两点(,求椭圆的标准方程
解:设椭圆的标准方程
则有 ,解得
所以,所求椭圆的标准方程为
例4 已知B,C是两个定点,|BC|=6,且的周长等于16,求顶点A的轨迹方程
解:以BC所在直线为轴,BC中垂线为轴建立直角坐标系,设顶点,根据已知条件得|AB|+|AC|=10
再根据椭圆定义得
所以顶点A的轨迹方程为
(≠0)(特别强调检验)
因为A为△ABC的顶点,故点A不在轴上,所以方程中要注明≠0的条件
三、课堂练习:
1.设为定点,||=6,动点M满足,则动点M的轨迹是 ( )
A.椭圆 B.直线 C.圆 D.线段
答案:D
2.椭圆的左右焦点为,一直线过交椭圆于A、B两点,则的周长为 ( )
A.32 B.16 C.8 D.4
答案:B
3.设∈(0,),方程表示焦点在轴上的椭圆,则∈
A.(0, B.(,) C.(0,) D.[,)
答案:B
4.如果方程表示焦点在轴上的椭圆,则的取值范围是______.
分析:将方程整理,得,据题意 ,解之得0<k<1.
5.方程表示焦点在轴上的椭圆,则的取值范围是______.
分析:据题意,解之得0<m<
6.在△ABC中,BC=24,AC、AB的两条中线之和为39,求△ABC的重心轨迹方程.
分析:以BC所在直线为轴,BC的中垂线为轴建立如图所示的平面直角坐标系,M为重心,则|MB|+|MC|=×39=26.
根据椭圆定义可知,点M的轨迹是以B、C为焦点的椭圆,故所求椭圆方程为 (≠0)
四、小结 :椭圆标准方程的两种形式及运用待定系数法求椭圆的标准方程的方法
五、课后作业:
平面内两个定点之间的距离为2,一个动点M到这两个定点的距离和为6.建立适当的坐标系,推导出点M的轨迹方程.
选题意图:本题考查椭圆标准方程的推导方法.
解:建立直角坐标系,使轴经过点,并且点O与线段的中点重合.
设是椭圆上任意一点,椭圆的焦距为2c(c=1),M与的距离的和等于常数6,则的坐标分别是(-1,0),(1,0).

∴.
将这个方程移项后,两边平方,得
两边再平方,得:
整理得:
两边除以72得:.
说明:本题若不限制解题方法则可借助椭圆的定义直接写出方程.
六、板书设计(略)
七、课后记:
图们市三高中 第 1页(共6页)高中数学教案 第8章圆锥曲线方程(第16课时) 战永捷
课 题:8.6抛物线的简单几何性质(二)
教学目的:
1.掌握抛物线的范围、对称性、顶点、离心率等几何性质;
2.掌握焦半径公式、直线与抛物线位置关系等相关概念及公式;
3.在对抛物线几何性质的讨论中,注意数与形的结合与转化
教学重点:抛物线的几何性质及其运用
教学难点:抛物线几何性质的运用
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教学过程:
一、复习引入: 抛物线的几何性质:
标准方程 图形 顶点 对称轴 焦点 准线 离心率




注意强调的几何意义:是焦点到准线的距离
抛物线不是双曲线的一支,抛物线不存在渐近线
二、讲解新课:
1.抛物线的焦半径及其应用:
定义:抛物线上任意一点M与抛物线焦点的连线段,叫做抛物线的焦半径
焦半径公式:
抛物线,
抛物线,
抛物线,
抛物线,
2.直线与抛物线:
(1)位置关系:
相交(两个公共点或一个公共点);相离(无公共点);相切(一个公共点)
下面分别就公共点的个数进行讨论:对于
当直线为,即,直线平行于对称轴时,与抛物线只有唯一的交点
当,设
将代入,消去y,得到
关于x的二次方程 (*)
若,相交;,相切;,相离
综上,得:
联立,得关于x的方程
当(二次项系数为零),唯一一个公共点(交点)
当,则
若,两个公共点(交点)
,一个公共点(切点)
,无公共点 (相离)
(2)相交弦长:
弦长公式:,其中a和分别是(*)中二次项系数和判别式,k为直线的斜率
当代入消元消掉的是y时,得到,此时弦长公式相应的变为:
(3)焦点弦:
定义:过焦点的直线割抛物线所成的相交弦。
焦点弦公式:设两交点,可以通过两次焦半径公式得到:
当抛物线焦点在x轴上时,焦点弦只和两焦点的横坐标有关:
抛物线,
抛物线,
当抛物线焦点在y轴上时,焦点弦只和两焦点的纵坐标有关:
抛物线,
抛物线,
(4)通径:
定义:过焦点且垂直于对称轴的相交弦
直接应用抛物线定义,得到通径:
(5)若已知过焦点的直线倾斜角

(6)常用结论:


3.抛物线的法线:
过抛物线上一点可以作一条切线,过切点所作垂直于切线的直线叫做抛物线在这点的法线,抛物线的法线有一条重要性质:
经过抛物线上一点作一直线平行于抛物线的轴,那么经过这一点的法线平分这条直线和这点与焦点连线的夹角如图.
抛物线的这一性质在技术上有着广泛的应用.例如,在光学上,如果把光源放在抛物镜的焦点F处,射出的光线经过抛物镜的反射,变成了平行光线,汽车前灯、探照灯、手电筒就是利用这个光学性质设计的.反过来,也可以把射来的平行光线集中于焦点处,太阳灶就是利用这个原理设计的
4.抛物线的参数方程:(t为参数)
三、讲解范例:
例 正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线上,求这个正三角形的边长.
分析:观察图,正三角形及抛物线都是轴对称图形,如果能证明x轴是它们公共的对称轴,则容易求出三角形边长.
解:如图,设正三角形OAB的顶点A、B在抛物线上,且坐标分别为、,则 ,
又|OA|=|OB|,所以

∵ ,∴ .
由此可得,即线段AB关于x轴对称.
因为x轴垂直于AB,且∠AOx=30°,所以
所以,
四、课堂练习:
1.正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线上,求这个正三角形的边长(答案:边长为)
2.正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线上,求正三角形外接圆的方程
分析:依题意可知圆心在轴上,且过原点,故可设圆的方程为:,
又∵ 圆过点, ∴ 所求圆的方程为
3.已知的三个顶点是圆与抛物线的交点,且的垂心恰好是抛物线的焦点,求抛物线的方程(答案:)
4.已知直角的直角顶点为原点,、在抛物线上,(1)分别求、两点的横坐标之积,纵坐标之积;(2)直线是否经过一个定点,若经过,求出该定点坐标,若不经过,说明理由;(3)求点在线段上的射影的轨迹方程
答案:(1); ;(2)直线过定点
(3)点的轨迹方程为
5.已知直角的直角顶点为原点,、在抛物线上,原点在直线上的射影为,求抛物线的方程(答案:)
6.已知抛物线与直线相交于、两点,以弦长为直径的圆恰好过原点,求此抛物线的方程(答案:)
7.已知直线与抛物线相交于、两点,若,(为坐标原点)且,求抛物线的方程(答案:)
8.顶点在坐标原点,焦点在轴上的抛物线被直线截得的弦长为,求抛物线的方程(答案:或)
五、小结 :焦半径公式、直线与抛物线位置关系等相关概念及公式
六、课后作业:
七、板书设计(略)
八、测 试 题:
1.顶点在原点,焦点在y轴上,且过点P(4,2)的抛物线方程是(   )
(A) x2=8y (B) x2=4y (C) x2=2y (D)
2.抛物线y2=8x上一点P到顶点的距离等于它们到准线的距离,这点坐标是(A) (2,4) (B) (2,±4) (C) (1,) (D) (1,±)
3.抛物线顶点在原点,以坐标轴为对称轴,过焦点且与y轴垂直的弦长等于8,则抛物线方程为    
4.抛物线y2=-6x,以此抛物线的焦点为圆心,且与抛物线的准线相切的圆的方程是  
5.以双曲线的右准线为准线,以坐标原点O为顶点的抛物线截双曲线的左准线得弦AB,求△OAB的面积.
测试题答案:
1.A 2.D 3.x2=±8y 4. 5.
图们市三高中 第 1页(共6页)高中数学教案 第8章圆锥曲线方程(第5课时) 战永捷
课 题:8.2椭圆的简单几何性质(二)
教学目的:
1. 掌握椭圆范围、对称性、顶点、离心率、准线方程等几何性质;
2.理解椭圆第二定义与第一定义的等价性;
3.掌握根据曲线方程来研究曲线性质的基本思路与方法;培养学生观察能力,概括能力;提高学生画图能力;提高学生分析问题与解决问题的能力
教学重点:椭圆的第二定义、椭圆的准线方程
教学难点:椭圆第二定义
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹
2.标准方程:, ()
3.椭圆的性质:由椭圆方程()
(1)范围:
,,椭圆落在组成的矩形中.
(2)对称性:
图象关于轴对称.图象关于轴对称.图象关于原点对称
原点叫椭圆的对称中心,简称中心.轴、轴叫椭圆的对称轴.从椭圆的方程中直接可以看出它的范围,对称的截距
(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点
椭圆和轴有两个交点,它们是椭圆的顶点 椭圆和轴有两个交,它们也是椭圆的顶点 因此椭圆共有四个顶点: ,加两焦点共有六个特殊点.
叫椭圆的长轴,叫椭圆的短轴.长分别为
分别为椭圆的长半轴长和短半轴长.椭圆的顶点即为椭圆与对称轴的交点
(4)离心率: 椭圆焦距与长轴长之比
椭圆形状与的关系:
,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在时的特例
椭圆变扁,直至成为极限位置线段,此时也可认为圆为椭圆在时的特例
4. 回顾一下焦点在轴上的椭圆的标准方程的推导过程:如果对椭圆标准方程推导过程中的关键环节进行适当变形,我们会有新的发现:
+= ⑴

即 ⑵
同时还有 (3)
观察上述三式的结构,说出它们各自的几何意义,从而引出椭圆的第二定义
二、讲解新课:
1.椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个内常数,那么这个点的轨迹叫做椭圆 其中定点叫做焦点,定直线叫做准线,常数就是离心率
2.椭圆的准线方程
对于,相对于左焦点对应着左准线;
相对于右焦点对应着右准线
对于,相对于下焦点对应着下准线;相对于上焦点对应着上准线
准线的位置关系:
焦点到准线的距离(焦参数)
其上任意点到准线的距离:(分情况讨论)
点评:(1)从上面的探索与分析可知,椭圆的第二定义与第一定义是等价的,它是椭圆两种不同的定义方式
(2)椭圆的准线方程有两条,这两条准线在椭圆外部,与短轴平行,且关于短轴对称
三、讲解范例:
例1 求下列椭圆的准线方程:(1) (2)
解:⑴方程可化为 ,是焦点在轴上且,的椭圆
所以此椭圆的准线方程为
⑵方程是焦点在轴上且,的椭圆
所以此椭圆的准线方程为
例2 椭圆上有一点P,它到椭圆的左准线距离为10,求点P到椭圆的右焦点的距离
解:椭圆的离心率为,根据椭圆的第二定义得,点P到椭圆的左焦点距离为
再根据椭圆的第一定义得,点P到椭圆的右焦点的距离为20-8=12
四、课堂练习:
1.求下列椭圆的焦点坐标与准线方程
(1)     (2)
答案:⑴焦点坐标;准线方程
⑵焦点坐标;准线方程
2.已知椭圆的两条准线方程为,离心率为,求此椭圆的标准方程
答案:
五、小结 :本节课学习了椭圆的第二定义,椭圆两种定义是等价的;椭圆的两种类型的准线方程也是不同的,须区别开来
上面(2)

同样(3)也可以这样处理,这是椭圆的焦半径公式
六、课后作业:
七、板书设计(略)
八、课后记:本课时背景材料是课本例4,学生解答例4并不困难,但对例4中直线的出现感到突然与困难,对由此得出的第二定义与第一定义有何内在联系搞不清楚 本设计通过反思椭圆标准方程的推导过程,引导学生自己去发现椭圆的第二定义 使学生明白两种定义是等价的,消除了学生困惑 利用引导学生去发现定义的教学,调动学生的积极性,加强了知识发生过程的教学 使用多媒体辅助教学,增加了课堂教学容量,提高了课堂教学效益
图们市三高中 第 1页(共5页)高中数学教案 第8章圆锥曲线方程(第12课时) 战永捷
课 题:8.4双曲线的简单几何性质 (三)
教学目的:
1.使学生掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质
2.掌握双曲线的另一种定义及准线的概念
3.掌握等轴双曲线,共轭双曲线等概念
4.进一步对学生进行运动变化和对立统一的观点的教育
教学重点:双曲线的渐近线、离心率、双曲线的另一种定义及其得出过程
教学难点:渐近线几何意义的证明,离心率与双曲线形状的关系,双曲线的另一种定义的得出过程
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.范围、对称性
由标准方程,从横的方向来看,直线x=-a,x=a之间没有图象,从纵的方向来看,随着x的增大,y的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线 双曲线不封闭,但仍称其对称中心为双曲线的中心
2.顶点
顶点:
特殊点:
实轴:长为2a, a叫做半实轴长
虚轴:长为2b,b叫做虚半轴长
双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异
3.渐近线
过双曲线的两顶点,作Y轴的平行线,经过作X轴的平行线,四条直线围成一个矩形 矩形的两条对角线所在直线方程是(),这两条直线就是双曲线的渐近线
4.等轴双曲线
定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线
等轴双曲线的性质:(1)渐近线方程为:;(2)渐近线互相垂直;(3)离心率
等轴双曲线可以设为:,当时交点在x轴,当时焦点在y轴上
5.共渐近线的双曲线系
如果已知一双曲线的渐近线方程为,那么此双曲线方程就一定是:或写成
6.双曲线的草图
具体做法是:画出双曲线的渐近线,先确定双曲线的顶点及第一象限内任意一点的位置,然后过这两点并根据双曲线在第一象限从渐近线下方逐渐接近渐近线的特点画出双曲线的一部分,最后利用双曲线的对称性画出完整的双曲线
7.离心率
双曲线的焦距与实轴长的比,叫做双曲线的离心率 范围:
双曲线形状与e的关系:,e越大,即渐近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它的开口就越阔
8.共轭双曲线
以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线 区别:三量a,b,c中a,b不同(互换)c相同
共用一对渐近线 双曲线和它的共轭双曲线的焦点在同一圆上
确定双曲线的共轭双曲线的方法:将1变为-1
共用同一对渐近线的双曲线的方程具有什么样的特征:可设为,当时交点在x轴,当时焦点在y轴上
二、讲解新课:
9. 双曲线的第二定义:到定点F的距离与到定直线的距离之比为常数的点的轨迹是双曲线 其中,定点叫做双曲线的焦点,定直线叫做双曲线的准线 常数e是双曲线的离心率.
10.准线方程:
对于来说,相对于左焦点对应着左准线,相对于右焦点对应着右准线;
位置关系: 焦点到准线的距离(也叫焦参数)
对于来说,相对于上焦点对应着上准线;相对于下焦点对应着下准线
11.双曲线的焦半径
定义:双曲线上任意一点M与双曲线焦点的连线段,叫做双曲线的焦半径
焦半径公式的推导:利用双曲线的第二定义,设双曲线

是其左右焦点
则由第二定义:,
同理
即有焦点在x轴上的双曲线的焦半径公式:
同理有焦点在y轴上的双曲线的焦半径公式:
( 其中分别是双曲线的下上焦点)
点评:双曲线焦半径公式与椭圆的焦半径公式的区别在于其带绝对值符号,如果要去绝对值,需要对点的位置进行讨论。两种形式的区别可以记为:左加右减,上减下加(带绝对值号)
12.焦点弦:
定义:过焦点的直线割双曲线所成的相交弦
焦点弦公式:可以通过两次焦半径公式得到:
设两交点
当双曲线焦点在x轴上时,
焦点弦只和两焦点的横坐标有关:
过左焦点与左支交于两点时:
过右焦点与右支交于两点时:
当双曲线焦点在y轴上时,
过左焦点与左支交于两点时:
过右焦点与右支交于两点时:
13.通径:
定义:过焦点且垂直于对称轴的相交弦
直接应用焦点弦公式,得到
三、讲解范例
例 点p(x,y)与定点F2(c,0)的距离与到的距离之比为常数,求P的轨迹方程
解:设d是点P到直线的距离.根据题意得
化简,得 ()
这是双曲线的标准方程
四、课堂练习:
1.双曲线16x2―9y2=―144的实轴长、虚轴长、离心率分别为(C)
(A)4, 3, (B)8, 6, (C)8, 6, (D)4, 3,
2.顶点在x轴上,两顶点间的距离为8, e=的双曲线的标准方程为(A)
(A) (B) (C) (D)
3.双曲线的两条准线间的距离等于(A)
(A) (B) (C) (D)
4.若双曲线上一点P到双曲线上焦点的距离是8,那么点P到上准线的距离是(D)
(A)10 (B) (C)2 (D)
5.经过点M(3, ―1),且对称轴在坐标轴上的等轴双曲线的标准方程是(D)
(A)y2―x2=8 (B)x2―y2=±8 (C)x2―y2=4 (D)x2―y2=8
6.以y=±x为渐近线的双曲线的方程是(D)
(A)3y2―2x2=6 (B)9y2―8x2=1 (C)3y2―2x2=1 (D)9y2―4x2=36
7.等轴双曲线的离心率为 ;等轴双曲线的两条渐近线的夹角是 ()
8.从双曲线的一个焦点到一条渐近线的距离是 .(b)
9.与有公共焦点,且离心率e=的双曲线方程是 ()
10.以5x2+8y2=40的焦点为顶点,且以5x2+8y2=40的顶点为焦点的双曲线的方程是 . ()
11.已知双曲线上一点到其右焦点距离为8,求其到左准线的距离(答案:)
五、小结 :
六、课后作业:
1.下列各对双曲线中,既有相同的离心率,又有相同的渐近线的是(B)
(A)―y2=1与y2―=1 (B)―y2=1与
(C)y2―=1与x2― (D)―y2=1与
2.若共轭双曲线的离心率分别为e1和e2,则必有(D)
(A)e1= e2 (B)e1 e2=1 (C)=1 (D)=1
3.若双曲线经过点(6, ),且渐近线方程是y=±x,则这条双曲线的方程是(C)
(A) (B) (C) (D)
4.双曲线的渐近线为y=±x,则双曲线的离心率为(C)
(A) (B)2 (C)或 (D)或
5.如果双曲线右支上一点P到它的右焦点的距离等于2,则P到左准线的距离为(C)
(A) (B) (C)8 (D)10
6.已知双曲线的一条准线是y=1,则实数k的值是(B)
(A) (B)― (C)1 (D)―1
7.双曲线的离心率e∈(1, 2),则k的取值范围是 .
8.若双曲线上的点M到左准线的距离为,则M到右焦点的距离是 .()
9.双曲线的离心率e=2,则它的一个顶点把焦点之间的线段分成长、短两段的比是 .()
10.在双曲线的一支上有不同的三点A(x1, y1), B(, 6), C(x3, y3)与焦点F间的距离成等差数列,则y1+y3等于 .(12)
七、板书设计(略)
八、课后记:
图们市三高中 第 1页(共7页)高中数学教案 第8章圆锥曲线方程(第15课时) 战永捷
课 题:8.6抛物线的简单几何性质(一)
教学目的:
1.掌握抛物线的范围、对称性、顶点、离心率等几何性质;
2.能根据抛物线的几何性质对抛物线方程进行讨论,在此基础上列表、描点、画抛物线图形;
3.在对抛物线几何性质的讨论中,注意数与形的结合与转化
教学重点:抛物线的几何性质及其运用
教学难点:抛物线几何性质的运用
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
内容分析:
?“抛物线的简单几何性质”是课本第八章最后一节,它在全章占有重要的地位和作用本节知识在生产、生活和科学技术中经常用到,也是大纲规定的必须掌握的内容,还是将来大学学习的基础知识之一 对于训练学生用坐标法解题,本节一如前面各节一样起着相当重要的作用
研究抛物线的几何性质和研究椭圆、双曲线的几何性质一样,按范围、对称性、顶点、离心率顺序来研究,完全可以独立探索得出结论 已知抛物线的标准方程,求它的焦点坐标和准线方程时,首先要判断抛物线的对称轴和开口方向,一次项的变量如果为(或),则轴(或轴)是抛物线的对称轴,一次项的符号决定开口方向,由已知条件求抛物线的标准方程时,首先要根据已知条件确定抛物线标准方程的类型,再求出方程中的参数
本节分两课时进行教学 第一课时内容主要讲抛物线的四个几何性质、抛物线的画图、例1、例2、及其它例题;第二课时主要内容焦半径公式、通径、例3
教学过程:
一、复习引入:
1.抛物线定义:
图形
方程
焦点
准线
平面内与一个定点F和一条定直线的距离相等的点的轨迹叫做抛物线 定点F叫做抛物线的焦点,定直线叫做抛物线的准线
2.抛物线的标准方程:
相同点:(1)抛物线都过原点;(2)对称轴为坐标轴;(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称 它们到原点的距离都等于一次项系数绝对值的,即
不同点:(1)图形关于X轴对称时,X为一次项,Y为二次项,方程右端为、左端为;图形关于Y轴对称时,X为二次项,Y为一次项,方程右端为,左端为 (2)开口方向在X轴(或Y轴)正向时,焦点在X轴(或Y轴)的正半轴上,方程右端取正号;开口在X轴(或Y轴)负向时,焦点在X轴(或Y轴)负半轴时,方程右端取负号
二、讲解新课:
抛物线的几何性质
1.范围
因为p>0,由方程可知,这条抛物线上的点M的坐标(x,y)满足不等式x≥0,所以这条抛物线在y轴的右侧;当x的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸.
2.对称性
以-y代y,方程不变,所以这条抛物线关于x轴对称,我们把抛物线的对称轴叫做抛物线的轴.
3.顶点
抛物线和它的轴的交点叫做抛物线的顶点.在方程中,当y=0时,x=0,因此抛物线的顶点就是坐标原点.
4.离心率
抛物线上的点M与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e表示.由抛物线的定义可知,e=1.
对于其它几种形式的方程,列表如下:
标准方程 图形 顶点 对称轴 焦点 准线 离心率




注意强调的几何意义:是焦点到准线的距离
抛物线不是双曲线的一支,抛物线不存在渐近线
通过图形的分析找出双曲线与抛物线上的点的性质差异,当抛物线上的点趋向于无穷远时,抛物线在这一点的切线斜率接近于对称轴所在直线的斜率,也就是说接近于和对称轴所在直线平行,而双曲线上的点趋向于无穷远时,它的切线斜率接近于其渐近线的斜率
附:抛物线不存在渐近线的证明.(反证法)
假设抛物线y2=2px存在渐近线y=mx+n,A(x,y)为抛物线上一点,
A0(x,y1)为渐近线上与A横坐标相同的点如图,
则有和y1=mx+n.

当m≠0时,若x→+∞,则
当m=0时,,当x→+∞,则
这与y=mx+n是抛物线y2=2px的渐近线矛盾,所以抛物线不存在渐近线
三、讲解范例:
例1 已知抛物线关于x轴为对称,它的顶点在坐标原点,并且经过点,求它的标准方程,并用描点法画出图形.
分析:首先由已知点坐标代入方程,求参数p.
解:由题意,可设抛物线方程为,因为它过点,
所以 ,即
因此,所求的抛物线方程为.
将已知方程变形为,根据计算抛物线在的范围内几个点的坐标,得
x 0 1 2 3 4 …
y 0 2 2.8 3.5 4 …
描点画出抛物线的一部分,再利用对称性,就可以画出抛物线的另一部分
点评:在本题的画图过程中,如果描出抛物线上更多的点,可以发现这条抛物线虽然也向右上方和右下方无限延伸,但并不能像双曲线那样无限地接近于某一直线,也就是说,抛物线没有渐近线.
例2 探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处,已知灯的圆的直径60cm,灯深为40cm,求抛物线的标准方程和焦点位置.
分析:这是抛物线的实际应用题,设抛物线的标准方程后,根据题设条件,可确定抛物线上一点坐标,从而求出p值.
解:如图,在探照灯的轴截面所在平面内建立直角坐标系,使反光镜的顶点(即抛物线的顶点)与原点重合,x轴垂直于灯口直径.
设抛物线的标准方程是 (p>0).
由已知条件可得点A的坐标是(40,30),代入方程,得,

所求的抛物线标准方程为.
例3 过抛物线的焦点F任作一条直线m,交这抛物线于A、B两点,
求证:以AB为直径的圆和这抛物线的准线相切.
分析:运用抛物线的定义和平面几何知识来证比较简捷.
证明:如图.设AB的中点为E,过A、E、B分别向准线引垂线AD,EH,BC,垂足为D、H、C,则
|AF|=|AD|,|BF|=|BC|
∴|AB|=|AF|+|BF|=|AD|+|BC|=2|EH|
所以EH是以AB为直径的圆E的半径,且EH⊥l,因而圆E和准线相切.
四、课堂练习:
1.过抛物线的焦点作直线交抛物线于,两点,如果,那么=( B )
(A)10 (B)8 (C)6 (D)4
2.已知为抛物线上一动点,为抛物线的焦点,定点,则的最小值为( B )
(A)3 (B)4 (C)5 (D)6
3.过抛物线的焦点作直线交抛物线于、两点,若线段、的长分别是、,则=( C )
(A) (B) (C) (D)
4.过抛物线焦点的直线它交于、两点,则弦的中点的轨迹方程是 ______ (答案: )
5.定长为的线段的端点、在抛物线上移动,求中点到轴距离的最小值,并求出此时中点的坐标
(答案: , M到轴距离的最小值为)
五、小结 :抛物线的离心率、焦点、顶点、对称轴、准线、中心等
六、课后作业:
1.根据下列条件,求抛物线的方程,并画出草图.
(1)顶点在原点,对称轴是x轴,顶点到焦点的距离等于8.
(2)顶点在原点,焦点在y轴上,且过P(4,2)点.
(3)顶点在原点,焦点在y轴上,其上点P(m,-3)到焦点距离为5.
2.过抛物线焦点F的直线与抛物线交于A、B两点,若A、B在准线上的射影是A2,B2,则∠A2FB2等于       
3.抛物线顶点在原点,以坐标轴为对称轴,过焦点且与y轴垂直的弦长为16,求抛物线方程.
4.以椭圆的右焦点,F为焦点,以坐标原点为顶点作抛物线,求抛物线截椭圆在准线所得的弦长.
5.有一抛物线型拱桥,当水面距拱顶4米时,水面宽40米,当水面下降1米时,水面宽是多少米?
习题答案:
1.(1)y2=±32x (2)x2=8y (3)x2=-8y
2.90°
3.x2=±16 y
4.
5.米
七、板书设计(略)
八、课后记:
图们市三高中 第 4页(共7页)高中数学教案 第8章圆锥曲线方程(第13课时) 战永捷
课 题:8.5抛物线及其标准方程(一)
教学目的:
1.使学生掌握抛物线的定义,标准方程及其推导过程;
2.根据定义画出抛物线的草图
3.使学生能熟练地运用坐标,进一步提高学生“应用数学”的水平
教学重点:抛物线的定义
教学难点:抛物线标准方程的不同形式
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
内容分析:
?“抛物线及其标准方程”是教材第八章第五节的内容,也是本章介绍的最后一种圆锥知识 学好本节对于完整地掌握二次曲线,有着不可替代的作用 作为教学大纲规定的重点内容,高考必考的考点,这节教材继续着力于教会学生运用坐标法解题以及培养学生的对立统一的思想观点
本节教材与前面的内容和结构都有相似之处 但抛物线的确定过程中只有一个定点,所以这里要从对值的讨论来导入新课
教材利用教具演示引出抛物线定义,这种直观形象的过程类似于椭圆、双曲线定义引出过程,同学们已有一定的经验 但这三者毕竟有着各自的特征,尤其是抛物线形成中依赖于一点一线而非两点,所以演示操作时除了讲出教材上的话之外还要适当与前面的椭圆、双曲线相关内容进行对比说明
像椭圆和双曲线一样,抛物线的标准方程不只一种形式,而是共有4种形式之多 为此应注意两点:一是要对四种方程形式进行列表对比,对其中的图形特征(如开口方向、顶点、对称轴等)也须作特别说明;二是要指出不能把抛物线当成双曲线的一支 当抛物线上的点趋向于无穷远时,抛物线没有渐近线;而双曲线上的点趋于无穷远时,它有渐近线
本节内容分为两课时 第一课时主要内容为抛物线的定义、标准方程及其推导、课本中的例一 第二课时的主要内容是课本中的例二、例三
教学过程:
一、复习引入:
1 椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个内的常数,那么这个点的轨迹叫做椭圆 其中定点叫做焦点,定直线叫做准线,常数就是离心率
2. 双曲线的第二定义:一动点到定点F的距离与到一条定直线的距离之比是一个内的常数,那么这个点的轨迹叫做双曲线 其中定点叫做双曲线的焦点,定直线叫做双曲线的准线 常数e是双曲线的离心率
3.问题:到定点距离与到定直线距离之比是定值e的点的轨迹,当01时是双曲线。此时自然想到,当e=1时轨迹是什么?
若一动点到定点F的距离与到一条定直线的距离之比是一个常数时,那么这个点的轨迹是什么曲线?
把一根直尺固定在图板上直线L位置,把一块三角板的一条直角边紧靠着真心直尺的边缘,再把一条细绳的一端固定在三角板的另一条直角边的一点A,取绳长等于点A到直角标顶点C的长(即点A到直线L的距离),并且把绳子的另一端固定在图板上的一点F 用铅笔尖扣着绳子,使点A到笔尖的一段绳子紧靠着三角板,然后将三角板沿着直尺上下滑动,笔尖就在图板上描出了一条曲线
二、讲解新课:
1. 抛物线定义:
平面内与一个定点F和一条定直线的距离相等的点的轨迹叫做抛物线 定点F叫做抛物线的焦点,定直线叫做抛物线的准线
2.推导抛物线的标准方程:
如图所示,建立直角坐标系系,设|KF|=(>0),那么焦点F的坐标为,准线的方程为,
设抛物线上的点M(x,y),则有
化简方程得
方程叫做抛物线的标准方程
(1)它表示的抛物线的焦点在x轴的正半轴上,焦点坐标是F(,0),它的准线方程是
(2)一条抛物线,由于它在坐标系的位置不同,方程也不同,有四种不同的情况,所以抛物线的标准方程还有其他几种形式:,,.这四种抛物线的图形、标准方程、焦点坐标以及准线方程如下
3.抛物线的准线方程:如图所示,分别建立直角坐标系,设出|KF|=(>0),则抛物线的标准方程如下:
(1), 焦点:,准线:
(2), 焦点:,准线:
(3), 焦点:,准线:
(4) , 焦点:,准线:
相同点:(1)抛物线都过原点;(2)对称轴为坐标轴;(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称 它们到原点的距离都等于一次项系数绝对值的,即
不同点:(1)图形关于X轴对称时,X为一次项,Y为二次项,方程右端为、左端为;图形关于Y轴对称时,X为二次项,Y为一次项,方程右端为,左端为 (2)开口方向在X轴(或Y轴)正向时,焦点在X轴(或Y轴)的正半轴上,方程右端取正号;开口在X轴(或Y轴)负向时,焦点在X轴(或Y轴)负半轴时,方程右端取负号
点评:(1)建立坐标系是坐标法的思想基础,但不同的建立方式使所得的方程繁简不同,布置学生自己写出推导过程并与课文对照可以培养学生动手能力、自学能力,提高教学效果 ,进一步明确抛物线上的点的几何意义
(2)猜想是数学问题解决中的一类重要方法,请同学们根据推导出的(1)的标准方程猜想其它几个结论,非常有利于培养学生归纳推理或类比推理的能力,帮助他们形成良好的直觉思维—数学思维的一种基本形式 另外让学生推导和猜想出抛物线标准方程所有的四种形式,也比老师直接写出这些方程给学生带来的理解和记忆的效果更好
(3)对四种抛物线的图形、标准方程、焦点坐标以及准线方程进行完整的归纳小结,让学生通过对比分析全面深刻地理解和掌握它们
三、讲解范例:
例1 (1)已知抛物线标准方程是,求它的焦点坐标和准线方程
  (2)已知抛物线的焦点坐标是F(0,-2),求它的标准方程
分析:(1)在标准方程下焦点坐标和准线方程都是用p的代数式表示的,所以只要求出p即可;
  (2)求的是标准方程,因此所指抛物线应过原点,结合焦点坐标求出p,问题易解。
解析:(1)p=3,焦点坐标是(,0)准线方程是x=-.
(2)焦点在y轴负半轴上,=2,
所以所求抛物线的标准议程是.
例2 已知抛物线的标准方程是(1)y2=12x,(2)y=12x2,求它的焦点坐标和准线方程.
分析:这是关于抛物线标准方程的基本例题,关键是(1)根据示意图确定属于哪类标准形式,(2)求出参数p的值.
解:(1)p=6,焦点坐标是(3,0)准线方程是x=-3.
(2)先化为标准方程,,焦点坐标是(0,),
准线方程是y=-.
例3 求满足下列条件的抛物线的标准方程:
(1)焦点坐标是F(-5,0)
(2)经过点A(2,-3)
分析:抛物线的标准方程中只有一个参数p,因此,只要确定了抛物线属于哪类标准形式,再求出p值就可以写出其方程,但要注意两解的情况(如第(2)小题).
解:(1)焦点在x轴负半轴上,=5,
所以所求抛物线的标准议程是.
(2)经过点A(2,-3)的抛物线可能有两种标准形式:
y2=2px或x2=-2py.
点A(2,-3)坐标代入,即9=4p,得2p=
点A(2,-3)坐标代入x2=-2py,即4=6p,得2p=
∴所求抛物线的标准方程是y2=x或x2=-y
四、课堂练习:
1.求下列抛物线的焦点坐标和准线方程
(1)y2=8x (2)x2=4y (3)2y2+3x=0 (4)
2.根据下列条件写出抛物线的标准方程
(1)焦点是F(-2,0)
(2)准线方程是
(3)焦点到准线的距离是4,焦点在y轴上
(4)经过点A(6,-2)
3.抛物线x2=4y上的点p到焦点的距离是10,求p点坐标
课堂练习答案:
1.(1)F(2,0),x=-2 (2)(0,1),y=-1
(3)(,0),x= (4)(0,),y=
2.(1)y2=-8x (2)x2=-y (3)x2=8y或x2=-8y
(4) 或 
3.(±6,9)
点评:练习时注意(1)由焦点位置或准线方程正确判断抛物线标准方程的类型;(2)p表示焦点到准线的距离故p>0;(3)根据图形判断解有几种可能
五、小结 :小结抛物线的定义、焦点、准线及其方程的概念;
六、课后作业:
七、板书设计(略)
八、课后记:
图们市三高中 第 1页(共5页)高中数学教案 第八章圆锥曲线方程教材分析 战永捷
第八章圆锥曲线方程教材分析
本章是在学生学习了直线和圆的方程的基础上,进一步学习用坐标法研究曲线。这一章主要学习椭圆、双曲线、抛物线的定义、方程、简单几何性质以及它们的简单应用 全章共分6个小节,教学时间约为18课时,各小节的教学时间分配如下:
8.1椭圆及其标准方程 3课时
8.2椭圆的简单几何性质 4课时
8.3双曲线及其标准方程 2课时
8.4双曲线的简单几何性质 3课时
8.5抛物线及其标准方程 2课时
8.6抛物线的简单几何性质 2课时
小结与复习 2课时
一、内容与要求
(一)本章的教学内容
圆锥曲线这一章研究的对象是图形,包括三种曲线:椭圆、双曲线、抛物线,使用的方法是代数方法,它的基础是第七章学过的曲线和方程的概念
我们知道,曲线可以看成是符合某种条件的点的轨迹,在解析几何里用坐标法研究曲线的一般程序是:建立适当的坐标系;求出曲线的方程;利用方程讨论曲线的几何性质;说明这些性质在实际中的应用 在第七草里学生已经初步学习了这种方法,不过,“圆锥曲线”这一章中,这种研究曲线的方法和过程以及它的优势体现得最突出 所以,“圆锥曲线”一直是解析几何的重点内容,特别是在对学生掌握坐标法的训练方面有着不可替代的作用
本章研究的椭圆、双曲线、抛物线的方程,主要是它们在直角坐标系中的标准方程,所谓标准方程就是曲线在标准位置时的方程,即曲线的中心或顶点在坐标原点,对称轴在坐标轴上时的方程,通过对这种方程的讨论得到的曲线的性质,可以利用平移图形推广到曲线的其他位置上去,所以,曲线的标准方程及它们在标准位置上的性质是本章的重点
(二)教学要求
本章的教学要求归纳起来有以下几点:
1.掌握椭圆、双曲线、抛物线的定义、标准方程和几何性质;
2.能够根据条件利用工具画圆锥曲线的图形,并了解圆锥曲线的初步应用;
3.进一步掌握坐标方法;
4.结合本章内容的教学,使学生进一步领会运动变化、对立统一的观点
解析几何是用代数的方法解决几何问题,体现了形数结合的思想,因而这一部分的题目的综合性比较强,它要求学生既能分析图形,又能灵活地进行各种代数式和三角函数式的变形,这对学生能力的要求较高 坐标方法是要求学生掌握的,但是,作为普通高中的必修课的教学要求不能过高,只能以绝大多数学生所能达到的程度为标准
二、本章的主要特点
(一)突出重点
1.突出重点内容
本章所研究的三种圆锥曲线,都是重要的曲线 因为对这几种曲线研究的问题基本一致,方法相同,所以教材对这三种曲线没有平均使用时间和力量,而是把重点放在椭圆上 通过求椭圆的标准方程,使学生掌握列这一类轨迹方程的一般规律,化简的常用办法 这样,在求双曲线、抛物线方程的时候,学生就可以独立地,或在教师的指导下比较顺利地完成 在讨论椭圆的几何性质时,教材以椭圆为例详细地说明了在解析几何中讨论曲线几何性质的一般程序,以及怎样利用方程研究曲线的范围、对称性,怎样确定曲线上的点的位置等,这样,学生在学习双曲线和抛物线时,就可以练习使用这些方法,从而在掌握解析几何基本方法上得到锻炼和提高
在讨论曲线的几何性质时,不求全,有选择地介绍主要性质 以便学生集中精力掌握圆锥曲线的最基本的性质
2.突出坐标方法
要重视数学思想方法的教学,结合教学内容,把反映出来的数学思想方法的教学,作为高中数学教学的一项重要任务来完成 根据圆锥曲线这部分内容的特点,在这一章里把训练学生掌握坐标法作为这一章数学方法教学的重点 例如教材在第8.6节中选择了一个求正三角形边长的例题,解这个题目时,首先要证明正三角形的对称轴就是抛物线的对称轴,这是用方程证明图形性质的问题,并且是比较典型的
(二)注意内容的整体性和训练的阶段性
高中数学教材是一个整体,各部分知识和技能之间是有机联系着的,特别是教材采用了“混编”的形式,将代数、立体几何、解析几何合成统一的高中数学,这就更需要加强各章之间的联系,互相配合,发挥整体的效益
(三)注意调动学生学习的主动性
教材是为教学服务的,归根结底是为学生服务的 学生是学习的主人,只有他们有主动性,才能达到学会学好的目的 目前,高中学生被动学习的现象比较突出,在调动学生学习的主动性方面,注意交代知识的来龙去脉,教给学生解决问题的思路 例如,在讲椭圆的几何性质时,由于这是第一次出现,所以教材增加了一些说明性的文字,首先说明解析几何里讨论曲线性质时,通常要讨论哪些性质,然后说明用方程讨论这些性质时的一般方法,这就使学生知道为什么学习,怎样去学习,学习就会变得主动 又如,学生学习中遇到的另一个问题是不会分析问题,遇到问题不知从什么地方入手,只好被动地听讲 教材注意提高例题的质量,在一些例题中给出了分析或小结(例题解后的注),通过对一些典型例题的分析,使学生学会分析解题思路,找出问题的关键,减少解题的盲目性;通过小结,指出解决问题的一般规律,提高学生解决问题的能力,提高学习效率
三、教学中应注意的问题
(一)注意准确地把握教学要求
准确地把握教学要求包括两个方面,第一是把握好大纲的精神,第二是学生的实际 根据大纲的精神,圆锥曲线部分是属于控制教学要求的内容,但目前由于考试的影响,这一部分教学的要求比较高,题目的难度很大 如何控制教学要求是个难点 高中的教学时间有限,作为全体学生都必须掌握的必修课程,应以最基础的知识和最基本的技能、能力为主,要使学生切实把基础打好不要过分重视技巧性很强的难题
从学生的学习规律来说,训练不能一次完成,要循序渐进,打好基础才能有较大的发展余地,急于求成是不可取的;学生的基础、兴趣、志向都是不同的,要根据学生的实际提出恰当的教学要求,这样学生才有学习的积极性,才能使学生达到预定的教学要求
(二)注意形数结合的教学
解析几何的特点就是形数结合,而形数结合的思想是一种重要的数学思想,是教学大纲中要求学生学习的内容之一,所以在这一章的教学过程中,要时刻注意这种数学思想的教学,并注意以下几点:
1.注意训练学生将几何图形的特征,用数或式表达出来,反过来,要使他们能根据点的坐标或曲线的方程,确定点的位置或曲线的性质,使学生能比较顺利地将形的问题转化为数或式的问题,将数或式的问题转化为形的问题。
2.注意在解决问题的过程中,充分利用图形。学生在解解折几何的题目时,往往在得到曲线的方程以后就把图形抛到一边去了,不再利用图形,忽视了图形直观对启发思路的作用。例如,巳知过抛物线焦点的直线与抛物线交于两点,求这两点的距离 解这个题目如果单纯用代数方法,可以完全不用图形;可是借助图形可以使问题变得简单 在解决解析几何的问题中,充分利用图形,有时不仅简单,而且能开阔思路
3.为了使学生在学习解析几何的过程中,以及今后的实际工作中能顺利地画出圆锥曲线的草图,教材结合圆锥曲线几何性质的教学,突出了圆锥曲线标准方程中的几何意义,根据它们的几何意义来画草图就比较方便,教学时,希望能充分利用这一点
(三)注意与初中数学的衔接
本章的教学离不开根式的化简和解二元二次方程组,由于义务教育初中数学中对这两部分内容降低了要求,所以学生这方面的基础较差 解决这个问题有两个思路,一是在这一章的前面集中补讲这些内容,二是在用到这些知识的时候边用边讲 例如,在列出椭圆的方程以后,出现了含两个根式的无理方程,这种方程初中代数中出现过,只是这里根号下的式子复杂些 教学时适当放慢些速度,将化简过程写得详细一些,学生是可以掌握的 又如,在利用待定系数法求椭圆的标准方程中的时,得到以为 未知数的方程组,并且未知数在分母上,这种方程组学生在初中没有见过,但是初中学过用换元法解方程组,若设,就可以把它化为初中学过的二元一次方程组,这样问题便能够解决,教材结合具体例题的教学过程,比较详细地说明了这类方程组的解法,边用边学 这个问题解决以后,求两条曲线的交点的问题,包括求椭圆与双曲线的交点的问题就都可以解决了
图们市三高中 第 1页(共4页)高中数学教案 第8章圆锥曲线方程(第18课时) 战永捷
课 题:小结与复习(二)
教学目的:
1通过小结与复习,使同学们完整准确地理解和掌握三种曲线的特点以及它们之间的区别与联系
2通过本节教学使学生较全面地掌握本章所教的各种方法与技巧,尤其是解析几何的基本方法――坐标法;并在教学中进一步培养他们形与数结合的思想、化归的数学思想以及“应用数学”的意识
3结合教学内容对学生进行运动变化和对立统一的观点的教育
教学重点:三种曲线的标准方程和图形、性质
教学难点:做好思路分析,引导学生找到解题的落足点
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教学过程:
一、讲解范例:
例1 根据下列条件,写出椭圆方程
⑴ 中心在原点、以对称轴为坐标轴、离心率为1/2、长轴长为8;
⑵ 和椭圆9x2+4y2=36有相同的焦点,且经过点(2,-3);
⑶ 中心在原点,焦点在x轴上,从一个焦点看短轴两端的视角为直角,焦点到长轴上较近顶点的距离是
分析: 求椭圆的标准方程,首先要根据焦点位置确定方程形式,其次是根据a2=b2+c2及已知条件确定a2、b2的值进而写出标准方程
解 ⑴ 焦点位置可在x轴上,也可在y轴上,
因此有两解:
⑵ 焦点位置确定,且为(0,),设原方程为,(a>b>0),由已知条件有 ,故方程为
⑶ 设椭圆方程为,(a>b>0)
由题设条件有 及a2=b2+c2,解得b=,
故所求椭圆的方程是
例2 从椭圆,(a>b>0)上一点M向x轴所作垂线恰好通过椭圆的左焦点F1,A、B分别是椭圆长、短轴的端点,AB∥OM设Q是椭圆上任意一点,当QF2⊥AB时,延长QF2与椭圆交于另一点P,若⊿F2PQ的面积为20,求此时椭圆的方程
解 可用待定系数法求解
∵b=c,a=c,可设椭圆方程为
∵PQ⊥AB,∴kPQ=-,则PQ的方程为y=(x-c),
代入椭圆方程整理得5x2-8cx+2c2=0,
根据弦长公式,得,
又点F1到PQ的距离d=c
∴ ,由
故所求椭圆方程为
例3 已知椭圆:,过左焦点F作倾斜角为的直线交椭圆于A、B两点,求弦AB的长
解:a=3,b=1,c=2; 则F(-2,0)
由题意知:与联立消去y得:
设A(、B(,则是上面方程的二实根,由违达定理,
,又因为A、B、F都是直线上的点,
所以|AB|=
点评:也可让学生利用“焦半径”公式计算
例4 中心在原点,一个焦点为F1(0,)的椭圆截直线所得弦的中点横坐标为,求椭圆的方程
分析:根据题意,可设椭圆的标准方程,与直线方程联立解方程组,利用韦达定理及中点坐标公式,求出中点的横坐标,再由F1(0,)知,c=,,最后解关于a、b的方程组即可
解:设椭圆的标准方程为,
由F1(0,)得
把直线方程代入椭圆方程整理得:
设弦的两个端点为,则由根与系数的关系得:

又AB的中点横坐标为,
,与方程联立可解出
故所求椭圆的方程为:
例5 直线与双曲线相交于A、B两点,当为何值时,A、B在双曲线的同一支上?当为何值时,A、B分别在双曲线的两支上?
解: 把代入
整理得:……(1)
当时,
由>0得且时,方程组有两解,直线与双曲线有两个交点
若A、B在双曲线的同一支,须>0 ,所以或
故当或时,A、B两点在同一支上;当时,A、B两点在双曲线的两支上
例6 已知双曲线的中心在原点,过右焦点F(2,0)作斜率为的直线,交双曲线于M、N 两点,且=4,求双曲线方程
解:设所求双曲线方程为,由右焦点为(2,0)知C=2,b2=4-a2
则双曲线方程为,设直线MN的方程为:,代入双曲线方程整理得:(20-8a2)x2+12a2x+5a4-32a2=0
设M(x1,y1),N(x2,y2),则,
解得:,
故所求双曲线方程为:
点评:利用待定系数法求曲线方程,运用一元二次方程得根与系数关系将两根之和与积整体代入,体现了数学的整体思想,也简化了计算,要求学生熟练掌握
例7 已知双曲线,过点 A(2,1)的直线与已知双曲线交于P、Q两点(1)求PQ中点的轨迹方程;(2)过B(1,1)能否作直线,使与所给双曲线交于两点M、N,且B为MN的中点,若存在,求出的方程,不存在说明理由
解:(1)设P(x1,y1)、Q(x2,y2),其中点为(x,y),PQ的斜率为k,
若PQ的斜率不存在显然(2,0)点是曲线上的点
若PQ的斜率存在,由题设知:
…(1) …(2)
(2)-(1)得:
,即…(3)
又代入(3)整理得:
(2)显然过B点垂直X抽的直线不符合题意只考虑有斜率的情况设的方程为y-1=k(x-1)
代入双曲线方程,整理得:
…※
设M(x1,y1)、N(x2,y2)则有解得:=2
又直线与双曲线必须有两不同交点,
所以※式的
把K=2代入得<0,
故不存在满足题意的直线
例8 已知抛物线方程为,直线过抛物线的焦点F且被抛物线截得的弦长为3,求p的值.
解:设与抛物线交于
由距离公式
|AB|==
则有

从而由于p>0,解得
例9 如图,线段AB过x轴正半轴上一点M(m,0)(m>0),端点A、B到x轴距离之积为,以x轴为对称轴,过A,O,B三点作抛物线
(1)求抛物线方程;
(2)若的取值范围
解:(1)当AB不垂直x轴时,设AB方程为
由|

故所求抛物线方程为
(2)设
①,
平方后化简得
又由①知
的取值范围为
轴时,
符合条件,
故符合条件的m取值范围为
二、课堂练习:
1.直线与曲线,相交于A、B两点,求直线的倾斜角的范围答案:
2.直线与双曲线的左支仅有一个公共点,求K的取值范围答案:或
3.已知双曲线与点P(1,2),过P点作直线L与双曲线交于A、B两点,若P为AB的中点(1)求直线AB的方程(2)若Q为(-1,-1),证明不存在以Q为中点的弦答案 AB:x-y+1=0
4.双曲线,一条长为8的弦AB的两端在曲线上运动,其中点为M,求距Y轴最近的点M的坐标答案:
5.顶点在原点,焦点在轴上的抛物线,截直线所得的弦长为,求抛物线的方程答案:或
6.过抛物线焦点的直线与抛物线交于、两点,若、在抛物线准线上的射影分别为、,则等于 ( B )
A. B C D
7若抛物线被过焦点,且倾斜角为的直线所截,求截得的线段的中点坐标答案:
8过点的直线与抛物线交于、两点,求直线的斜率K的取值范围答案:
9.过点作倾斜角为的直线交抛物线于点、,若,求实数的值答案:
三、小结 :
(1)直线与曲线的位置关系有相离、相切、相交三种
(2)判断其位置关系看直线是否过定点,在根据定点的位置和双曲线的渐近线的斜率与直线的斜率的大小关系确定其位置关系
(3)可通过解直线方程与曲线方程解的个数来确定他们的位置关系但有一解不一定是相切,要根据斜率作进一不的判定
四、课后作业:
五、板书设计(略)
六、课后记:采用数形结合、类比联想(椭圆)、启发诱导的教学方法,注重思维能力的培养和学生动手操作的能力的训练,同时结合几何画板进行动画演示,验证结果(特别是轨迹问题)
图们市三高中 第 1页(共9页)高中数学教案 第8章圆锥曲线方程(第1课时) 战永捷
课 题:8.1椭圆及其标准方程(一)
教学目的:
1.理解椭圆的定义 明确焦点、焦距的概念
2.熟练掌握椭圆的标准方程,会根据所给的条件画出椭圆的草图并确定椭圆的标准方程
3.能由椭圆定义推导椭圆的方程
4.启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;培养学生抽象概括能力和逻辑思维能力
教学重点:椭圆的定义和标准方程
教学难点:椭圆标准方程的推导
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
内容分析:
高中数学学科课程标准对本节课的教学要求达到“掌握”的层次,即在对有关概念有理性的认识,能用自己的语言进行叙述和解释,了解它们与其他知识联系的基础上,通过训练形成技能,并能作简单的应用
根据数学学科的特点、学生身心发展的合理需要和社会的政治经济、科学技术的需求,本节课从知识、能力和情感三个层面确定了相应的教学目标
椭圆的定义是一种发生性定义,是通过描述椭圆形成过程进行定义的 作为椭圆本质属性的揭示和椭圆方程建立的基石,理应作为本堂课的教学重点 同时,椭圆的标准方程作为今后研究椭圆性质的根本依据,自然成为本节课的另一教学重点
学生对“曲线与方程”的内在联系(数形结合思想的具体表现)仅在“圆的方程”一节中有过一次感性认识 但由于学生比较了解圆的性质,从“曲线与方程”的内在联系角度来看,学生并未真正有所感受 所以,椭圆定义和椭圆标准方程的联系成为了本堂课的教学难点
圆锥曲线是平面解析几何研究的主要对象 圆锥曲线的有关知识不仅在生产、日常生活和科学技术中有着广泛的应用,而且是今后进一步数学的基础 教科书以椭圆为学习圆锥曲线的开始和重点,并以之来介绍求圆锥曲线方程和利用方程讨论几何性质的一般方法,可见本节内容所处的重要地位
通过本节学习,学生一方面认识到一般椭圆与圆的区别与联系,另一方面也为利用方程研究椭圆的几何性质以及为学生类比椭圆的研究过程和方法,学习双曲线、抛物线奠定了基础
根据本节教材的重点、难点,课时拟作如下安排:第一课时,椭圆的定义及标准方程的推导;第二课时,椭圆标准方程的两种形式及运用待定系数法求椭圆的标准方程;第三课时,以椭圆为载体的动点轨迹方程的探求
教学过程:
一、复习引入:
1.1997年初,中国科学院紫金山天文台发布了一条消息,从1997年2月中旬起,海尔·波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空 1997年2月至3月间,许多人目睹了这一天文现象天文学家是如何计算出彗星出现的准确时间呢?原来,海尔·波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它运行周期及轨道的的周长
(说明椭圆在天文学和实际生产生活实践中的广泛应用,指出研究椭圆的重要性和必要性,从而导入本节课的主题)
2.复习求轨迹方程的基本步骤:
3.手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在
画图板上的两点,当绳长大于两点间的距离时,用铅笔把绳子拉
近,使笔尖在图板上慢慢移动,就可以画出一个椭圆
分析:(1)轨迹上的点是怎么来的?
(2)在这个运动过程中,什么是不变的?
答:两个定点,绳长
即不论运动到何处,绳长不变(即轨迹上与两个定点距离之和不变)
二、讲解新课:
1 椭圆定义:
平面内与两个定点的距离之和等于常数(大于)的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距
注意:椭圆定义中容易遗漏的两处地方:
(1)两个定点---两点间距离确定
(2)绳长--轨迹上任意点到两定点距离和确定
思考:在同样的绳长下,两定点间距离较长,则所画出的椭圆较扁(线段)
在同样的绳长下,两定点间距离较短,则所画出的椭圆较圆(圆)
由此,椭圆的形状与两定点间距离、绳长有关(为下面离心率概念作铺垫)
2.根据定义推导椭圆标准方程:
取过焦点的直线为轴,线段的垂直平分线为轴
设为椭圆上的任意一点,椭圆的焦距是().
则,又设M与距离之和等于()(常数)


化简,得 ,
由定义,
令代入,得 ,
两边同除得
此即为椭圆的标准方程
它所表示的椭圆的焦点在轴上,焦点是,中心在坐标原点的椭圆方程 其中
注意若坐标系的选取不同,可得到椭圆的不同的方程
如果椭圆的焦点在轴上(选取方式不同,调换轴)焦点则变成,只要将方程中的调换,即可得
,也是椭圆的标准方程
理解:所谓椭圆标准方程,一定指的是焦点在坐标轴上,且两焦点的中点为坐标原点;在与这两个标准方程中,都有的要求,如方程就不能肯定焦点在哪个轴上;分清两种形式的标准方程,可与直线截距式类比,如中,由于,所以在轴上的“截距”更大,因而焦点在轴上(即看分母的大小)
三、讲解范例:
例1 写出适合下列条件的椭圆的标准方程:
⑴两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点P到两焦点的距离
之和等于10;
⑵两个焦点坐标分别是(0,-2)和(0,2)且过(,)
解:(1)因为椭圆的焦点在轴上,所以设它的标准方程为
    
所以所求椭圆标准方程为
2 因为椭圆的焦点在轴上,所以设它的标准方程为
由椭圆的定义知,

 
 又
所以所求标准方程为
另法:∵
∴可设所求方程,后将点(,)的坐标代入可求出,从而求出椭圆方程
点评:题(1)根据定义求 若将焦点改为(0,-4)、(0,4)其结果如何;
题(2)由学生的思考与练习,总结有两种求法:其一由定义求出长轴与短轴长,根据条件写出方程;其二是由已知焦距,求出长轴与短轴的关系,设出椭圆方程,由点在椭圆上的条件,用待定系数的办法得出方程
四、课堂练习:
1 椭圆上一点P到一个焦点的距离为5,则P到另一个焦点的距离为( )
?A.5 ?B.6 ?C.4 ?D.10
2.椭圆的焦点坐标是( )
?A.(±5,0)? B.(0,±5) ?C.(0,±12)? D.(±12,0)
3.已知椭圆的方程为,焦点在轴上,则其焦距为( )
?A.2? B.2
?C.2? D.
4.,焦点在y轴上的椭圆的标准方程是
5.方程表示椭圆,则的取值范围是( )
?A.? B.?∈Z)
? C.? D. ∈Z)
参考答案:
1.A?2.C?3.A?4. 5. B?
五、小结 :本节课学习了椭圆的定义及标准方程,应注意以下几点:
①椭圆的定义中, ;
②椭圆的标准方程中,焦点的位置看,的分母大小来确定;
③、、的几何意义
六、课后作业:
1.判断下列方程是否表上椭圆,若是,求出的值
①;②;③;④
答案:①表示园;②是椭圆;
③不是椭圆(是双曲线);④可以表示为 ,是椭圆,
2 椭圆的焦距是 ,焦点坐标为 ;若CD为过左焦点的弦,则的周长为
答案:
3. 方程的曲线是焦点在上的椭圆 ,求的取值范围
答案:
4 化简方程:
答案:
5 椭圆上一点P到焦点F1的距离等于6,则点P到另一个焦点F2的距离是
答案:4
6 动点P到两定点 (-4,0), (4,0)的距离的和是8,则动点P的轨迹为 _______
答案:是线段,即
七、板书设计(略)
八、课后记:
写出适合下列条件的椭圆的标准方程:(口答)
(1) a=4,b=3,焦点在x轴;(2)a=5,c=2,焦点在y轴上.(答案:;)
(2) 已知三角形ΔABC的一边长为6,周长为16,求顶点A的轨迹方程
解:以BC边为x轴,BC线段的中垂线为y轴建立直角坐标系,则A点的轨迹是椭圆,其方程为:
若以BC边为y轴,BC线段的中垂线为x轴建立直角坐标系,则A点的轨迹是椭圆,
其方程为:
图们市三高中 第 1页(共7页)高中数学教案 第8章圆锥曲线方程(第4课时) 战永捷
课 题:8.2椭圆的简单几何性质(一)
教学目的:
1.熟练掌握椭圆的范围,对称性,顶点等简单几何性质
2.掌握标准方程中的几何意义,以及的相互关系
3.理解、掌握坐标法中根据曲线的方程研究曲线的几何性质的一般方法
教学重点:椭圆的几何性质
教学难点:如何贯彻数形结合思想,运用曲线方程研究几何性质
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
内容分析:
根据曲线的方程,研究曲线的几何性质,并正确地画出它的图形,是解析几何的基本问题之一,根据曲线的条件列出方程,如果说是解析几何的手段,那么根据曲线的方程研究它的性质、画图就是解析几何的目的 怎样用代数的方法来研究曲线原性质呢?本节内容为系统地按照方程来研究曲线的几何性质提供了一个范例,因此,本节内容在解析几何中占有非常重要的地位
通过本节的学习,使学生掌握应从哪些方面来讨论一般曲线的几何性质,从而对曲线的方程和方程的曲线彼此之间的相辅相成的辩证关系,对解析几何的基本思想有更深的了解 通过对椭圆几种画法的学习,能深化对椭圆定义的认识,提高画图能力;通过几何性质的简单的应用,了解到如何应用几何性质去解决实际问题,提高学生用数学知识解决实际问题的能力
本节内容的重点是椭圆的几何性质――范围、对称性、顶点、离心率、准线方程;根据方程研究曲线的几何性质的思路与方法;椭圆的几种画法。难点是椭圆的离心率、准线方程及椭圆的第二定义的理解,关键是掌握椭圆的标准方程与椭圆图形的对应关系,理解关掌握两种椭圆的定义的等价性
根据教学大纲的安排,本节内容分4个课时进行教学,本节内容的课时分配作如下设计:第一课时,椭圆的范围、对称性、顶点坐标、离心率、椭圆的画法;第二课时,椭圆的第二定义、椭圆的准线方程;第三课时,焦半径公式与椭圆的标准方程;第四课时,椭圆的参数方程及应用
教学过程:
一、复习引入:
1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹
2.标准方程:, ()
3.问题:
(1)椭圆曲线的几何意义是什么?
(2)“范围”是方程中变量的取值范围,是曲线所在的位置的范围,椭圆的标准方程中的取值范围是什么?其图形位置是怎样的?
(3)标准形式的方程所表示的椭圆,其对称性是怎样的?
(4)椭圆的顶点是怎样的点?椭圆的长轴与短轴是怎样定义的?长轴长、短轴长各是多少?的几何意义各是什么?
(5)椭圆的离心率是怎样定义的?用什么来表示?它的范围如何?在这个范围内,它的变化对椭圆有什么影响?
(6)画椭圆草图的方法是怎样的?
二、讲解新课:
由椭圆方程() 研究椭圆的性质.(利用方程研究,说明结论与由图形观察一致)
(1)范围:
从标准方程得出,,即有,,可知椭圆落在组成的矩形中.
(2)对称性:
把方程中的换成方程不变,图象关于轴对称.换成方程不变,图象关于轴对称.把同时换成方程也不变,图象关于原点对称.
如果曲线具有关于轴对称,关于轴对称和关于原点对称中的任意两种,则它一定具有第三种对称
原点叫椭圆的对称中心,简称中心.轴、轴叫椭圆的对称轴.从椭圆的方程中直接可以看出它的范围,对称的截距
(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点
在椭圆的方程里,令得,因此椭圆和轴有两个交点,它们是椭圆的顶点
令,得,因此椭圆和轴有两个交,它们也是椭圆的顶点 因此椭圆共有四个顶点: ,
加两焦点共有六个特殊点.
叫椭圆的长轴,叫椭圆的短轴.长分别为
分别为椭圆的长半轴长和短半轴长.椭圆的顶点即为椭圆与对称轴的交点.
至此我们从椭圆的方程中直接可以看出它的范围, 对称性, 顶点.因而只需少量描点就可以较正确的作图了.
(4)离心率:
发现长轴相等,短轴不同,扁圆程度不同
这种扁平性质由什么来决定呢?
概念:椭圆焦距与长轴长之比
定义式:
范围:
考察椭圆形状与的关系:
,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在时的特例
椭圆变扁,直至成为极限位置线段,此时也可认为圆为椭圆在时的特例
三、讲解范例:
例1 求椭圆的长轴和短轴的长、离心率、焦点和顶点的坐标,并用描点法画出它的图形.
解:把已知方程化成标准方程
所以,,
因此,椭圆的长轴的长和短轴的长分别为,离心率,两个焦点分别为,椭圆的四个顶点是,
将已知方程变形为,根据,在的范围内算出几个点的坐标:
0 1 2 3 4 5
4 3.9 3.7 3.2 2.4 0
先描点画出椭圆的一部分,再利用椭圆的对称性画出整个椭圆:
例2 在同一坐标系中画出下列椭圆的简图:
    (1)  (2)
答:简图如下:
例3 分别在两个坐标系中,画出以下椭圆的简图:
 (1)   (2)
答:简图如下:
四、课堂练习:
1.已知椭圆的一个焦点将长轴分为:两段,求其离心率
解:由题意,=:,即,解得
2.如图,求椭圆,()内接正方形ABCD的面积
解 由椭圆和正方形的中心对称性知,正方形BFOE的面积是所求正方形面积的1/4,且B点横纵坐标相等,故设B(),代入椭圆方程求得,即正方形ABCD面积为
五、小结 :这节课学习了用方程讨论曲线几何性质的思想方法;学习了椭圆的几何性质:对称性、顶点、范围、离心率;学习了椭圆的描点法画图及徒手画椭圆草图的方法
六、课后作业:
七、板书设计(略)
八、课后记:
图们市三高中 第 1页(共5页)高中数学教案 第8章圆锥曲线方程(第6课时) 战永捷
课 题:8.2椭圆的简单几何性质(三)
教学目的:
1. 能推导,掌握椭圆的焦半径公式,并能利用焦半径公式解决有关与焦点距离有关的问题;
2.能利用椭圆的有关知识解决实际问题,及综合问题;
3.体会数学形式的简洁美,增强爱国主义观念
教学重点:焦半径公式的的推导及应用
教学难点:焦半径公式的的推导,应用问题中坐标系的建立
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹
2.标准方程:, ()
3.椭圆的性质:由椭圆方程()
(1)范围: ,,椭圆落在组成的矩形中.
(2)对称性:图象关于轴对称.图象关于轴对称.图象关于原点对称 原点叫椭圆的对称中心,简称中心.轴、轴叫椭圆的对称轴.从椭圆的方程中直接可以看出它的范围,对称的截距
(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点
椭圆共有四个顶点: ,加两焦点共有六个特殊点. 叫椭圆的长轴,叫椭圆的短轴.长分别为 分别为椭圆的长半轴长和短半轴长.椭圆的顶点即为椭圆与对称轴的交点
(4)离心率: 椭圆焦距与长轴长之比
椭圆形状与的关系:,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在时的特例 椭圆变扁,直至成为极限位置线段,此时也可认为圆为椭圆在时的特例
4.椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个内常数,那么这个点的轨迹叫做椭圆 其中定点叫做焦点,定直线叫做准线,常数就是离心率
椭圆的第二定义与第一定义是等价的,它是椭圆两种不同的定义方式
5.椭圆的准线方程:椭圆的准线方程有两条,这两条准线在椭圆外部,与短轴平行,且关于短轴对称
对于,左准线;右准线
对于,下准线;上准线
焦点到准线的距离(焦参数)
二、讲解新课:
椭圆的焦半径公式:设是椭圆的一点,和分别是点与点,的距离.那么(左焦半径),(右焦半径),其中是离心率
推导方法一: ,

即(左焦半径),(右焦半径)
推导方法二:

同理有焦点在y轴上的椭圆的焦半径公式:
( 其中分别是椭圆的下上焦点)
注意:焦半径公式的两种形式的区别只和焦点的左右有关,而与点在左在右无关 可以记为:左加右减,上减下加
三、讲解范例
例1 如图所示,我国发射的第一颗人造地球卫星运行轨道是以地心(地球的中心)为一个焦点的椭圆,已知它的近地点A(离地面最近的点)距地面439km,远地点B(离地面最远的点)距地面2384km,并且、A、B在同一直线上,设地球半径约为6371km,求卫星运行的轨道方程 (精确到1km).
解:建立如图所示直角坐标系,使点A、B、在轴上,
则 =|OA|-|O|=|A|=6371+439=6810
=|OB|+|O|=|B|=6371+2384=8755
解得=7782.5,=972.5
.
卫星运行的轨道方程为
例2 椭圆,其上一点P(3,)到两焦点的距离分别是6.5和3.5,求椭圆方程
解:由椭圆的焦半径公式,得
,解得,从而有
所求椭圆方程为
四、课堂练习:
1.P为椭圆上的点,且P与的连线互相垂直,求P
解:由题意,得=64,
P的坐标为,,,
2.椭圆上不同三点与焦点F(4,0)的距离成等差数列,求证
证明:由题意,得 =2
3.设P是以0为中心的椭圆上任意一点,为右焦点,求证:以线段为直径的圆与此椭圆长轴为直径的圆内切
证明:设椭圆方程为,(),
焦半径是圆的直径,
则由知,两圆半径之差等于圆心距,
所以,以线段为直径的圆与此椭圆长轴为直径的圆内切
五、小结 :焦半径公式的推导方法及形式;实际问题中坐标系的建立应使问题易求解
六、课后作业:
七、板书设计(略)
八、课后记:
图们市三高中 第 1页(共4页)高中数学教案 第8章圆锥曲线方程(第9课时) 战永捷
课 题:8.3双曲线及其标准方程(二)
1.使学生掌握双曲线的定义,熟记双曲线的标准方程,并能初步应用;
2.使学生初步会按特定条件求双曲线的标准方程;
3.培养学生发散思维的能力
教学重点:标准方程及其简单应用
教学难点:双曲线标准方程的推导及待定系数法解二元二次方程组
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
名 称 椭 圆 双 曲 线
图 象
定 义 平面内到两定点的距离的和为常数(大于)的动点的轨迹叫椭圆。即 当2﹥2时,轨迹是椭圆, 当2=2时,轨迹是一条线段 当2﹤2时,轨迹不存在 平面内到两定点的距离的差的绝对值为常数(小于)的动点的轨迹叫双曲线。即当2﹤2时,轨迹是双曲线当2=2时,轨迹是两条射线当2﹥2时,轨迹不存在
标准方 程 焦点在轴上时: 焦点在轴上时: 注:是根据分母的大小来判断焦点在哪一坐标轴上 焦点在轴上时: 焦点在轴上时:注:是根据项的正负来判断焦点所在的位置
常数的关 系 (符合勾股定理的结构), 最大, (符合勾股定理的结构)最大,可以
二、讲解范例:
例1 已知双曲线的焦点在轴上,中心在原点,且点,,在此双曲线上,求双曲线的标准方程
分析:由于已知焦点在轴上,中心在原点,所以双曲线的标准方程可用设出来,进行求解 本题是用待定系数法来解的,得到的关于待定系数的一个分式方程组,并且分母的次数是2,解这种方程组时利用换元法可将它化为二元二次方程组;也可将的倒数作为未知数,直接看作二元一次方程组
解:因为双曲线的焦点在轴上,中心在原点,所以设所求双曲线的标准方程为
()
则有 ,即
解关于的二元一次方程组,得
所以,所求双曲线的标准方程为
变式例题1 点A位于双曲线上,是它的两个焦点,求的重心G的轨迹方程
分析:要求重心的轨迹方程,必须知道三角形的三个顶点的坐标,利用相关点法进行求解 注意限制条件
解:设的重心G的坐标为,则点A的坐标为
因为点A位于双曲线上,从而有
,即
所以,的重心G的轨迹方程为
点评:求轨迹方程,常用的方法是直接求法和间接求法两种 例1是直接利用待定系数法求轨迹方程 本题则是用间接法(也叫代入法)来解题,补充本例是为了进一步提高学生分析问题和解决问题的能力 另外本题所求轨迹中包含一个隐含条件,它表现为轨迹上点的坐标应满足一个不等关系,而这一点正是学生容易忽略,造成错误的地方,所以讲解本题有利于培养学生数学思维的缜密性,养成严谨细致的学习品质
变式例题2 已知的底边BC长为12,且底边固定,顶点A是动点,使,求点A的轨迹
分析:首先建立坐标系,由于点A的运动规律不易用坐标表示,注意条件的运用,可利用正弦定理将其化为边的关系,注意有关限制条件
解:以底边BC 为轴,底边BC的中点为原点建立坐标系,这时
,由得
,即
所以,点A的轨迹是以为焦点,2=6的双曲线的左支 其方程为:
点评:求轨迹方程的过程中,有一个重要的步骤就是找出(或联想到)轨迹上的动点所满足的几何条件,列方程就是根据这些条件确定的,由于轨迹问题比较普遍,题型多样,有些轨迹上的动点满足的几何条件可能比较隐蔽和复杂解决它需要突出形数结合的思考方法,运用逻辑推理,结合平面几何的基本知识,分析、归纳,这里安排本例就是针对以上情况来进行训练的
例2  一炮弹在某处爆炸,在A处听到爆炸声的时间比在B处晚2s.
(1)爆炸点应在什么样的曲线上?
(2)已知A、B两地相距800m,并且此时声速为340 m/s,求曲线的方程.
分析:解应用题的关键是建立数学模型 根据本题设和结论,注意到在A处听到爆炸声的时间比B处晚2s,这里声速取同一个值
解:(1)由声速及A、B两处听到爆炸声的时间差,可知A、B两处与爆炸点的距离的差,因此爆炸点应位于以A、B为焦点的双曲线上
因为爆炸点离A处比离B处更远,所以爆炸点应在靠近B处的一支上.
(2)如图,建立直角坐标系,使A、B两点在轴上,并且点O与线段AB的中点重合
设爆炸点P的坐标为,则 |PA|-|PB|=340×2=680,即 2=680,=340.
又|AB|=800, ∴  2c=800,c=400,=44400
∵  |PA|-|PB|=680>0,
∴  >0
所求双曲线的方程为
(>0)
例2说明,利用两个不同的观测点测得同一炮弹爆炸声的时间差,可以确定爆炸点所在的双曲线的方程,但不能确定爆炸点的准确位置.如果再增设一个观测点C,利用B、C(或A、C)两处测得的爆炸声的时间差,可以求出另一个双曲线的方程,解这两个方程组成的方程组,就能确定爆炸点的准确位置.这是双曲线的一个重要应用
想一想,如果A、B两处同时听到爆炸声,那么爆炸点应在什么样的曲线上.(爆炸点应在线段AB的中垂线上)
点评:本例是培养学生应用双曲线知识解决实际问题的一道典型题目,安排在此非常有利于强化学生“应用数学”的意识,后面对“想一想”的教学处理,有利于调动学生的学习主动性和积极性,培养他们的发散思维能力
例3求与圆及都外切的动圆圆心的轨迹方程
解:设动圆的半径为r,则由动圆与定圆都外切得

又因为,
由双曲线的定义可知,点M的轨迹是双曲线的一支
所求动圆圆心的轨迹是双曲线的一支,其方程为:
三、课堂练习:
1.判断方程所表示的曲线。
解:①当时,即当时,是椭圆;
②当时,即当时,是双曲线;
2.求焦点的坐标是(-6,0)、(6,0),并且经过点A(-5,2)的双曲线的标准方程。
答案:
3.求经过点和,焦点在y轴上的双曲线的标准方程答案:
4.椭圆和双曲线有相同的焦点,则实数的值是 ( )
A B C 5 D 9
答案:B
5.已知是双曲线的焦点,PQ是过焦点的弦,且PQ的倾斜角为600,那么的值为(答案: 4=16)
6.设是双曲线的焦点,点P在双曲线上,且,则点P到轴的距离为( )
A 1 B C 2 D
答案:B 的面积为,从而有
7.P为双曲线上一点,若F是一个焦点,以PF为直径的圆与圆的位置关系是()
A 内切 B 外切 C 外切或内切 D 无公共点或相交
答案:C
四、小结 :本课着重讲解了待定系数法,代入法及利用定义求双曲线的标准方程,学习了双曲线的一个重要应用
五、课后作业:
六、板书设计(略)
七、课后记:
图们市三高中 第 1页(共6页)高中数学教案 第8章圆锥曲线方程(第17课时) 战永捷
课 题:小结与复习(一)
教学目的:
1通过小结与复习,使同学们完整准确地理解和掌握三种曲线的特点以及它们之间的区别与联系
2通过本节教学使学生较全面地掌握本章所教的各种方法与技巧,尤其是解析几何的基本方法――坐标法;并在教学中进一步培养他们形与数结合的思想、化归的数学思想以及“应用数学”的意识
3结合教学内容对学生进行运动变化和对立统一的观点的教育
教学重点:三种曲线的标准方程和图形、性质
教学难点:做好思路分析,引导学生找到解题的落足点
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
内容分析:
? 在学完椭圆、双曲线、抛物线知识之后进行必要的小结与复习,可以梳理知识要点,使学生从圆锥曲线这个整体高度来全面认识三种曲线;同时也可以对前面所学的各种解析几何的基本方法进行归纳整理 所以本节在全章教学中起着复习、巩固和提高的作用
椭圆、双曲线、抛物线同属于圆锥曲线,它们的定义、标准方程及其推导过程以及简单的几何性质都存在着巨大的相似之处,也有着一定的区别 而前面只是它节逐个学完了三种曲线,还缺少对它们归类比较,为了提高水平,使同学们能够完整准确地理解和掌握三种曲线的特点以及它们之间的区别与联系
本章介绍使用了较多的思想方法,其中的重点是数形结合的思想,转化与化归思想,坐标法等,这些都是培养学生解决解析几何问题的基本技能和能力的基础 解析几何是最终能体现运动与变化、对立与统一的思想观点的内容之一 点与坐标、方程与曲线之间的转化与化归给我们提供了良好的思想教育素材,我们应该给予充分的利用,达到应有的教学效果
本小结与复习可分为二个课时进行教学 第一课时主要讲解课本上内容,即:一、内容提要;二、学习要求和需要注意的问题 第二课时则针对本章的训练重点,讲解例题,进行巩固和提高
教学过程:
一、复习引入:
名 称 椭 圆 双 曲 线
图 象
定 义 平面内到两定点的距离的和为常数(大于)的动点的轨迹叫椭圆即 当2﹥2时,轨迹是椭圆, 当2=2时,轨迹是一条线段 当2﹤2时,轨迹不存在 平面内到两定点的距离的差的绝对值为常数(小于)的动点的轨迹叫双曲线即当2﹤2时,轨迹是双曲线当2=2时,轨迹是两条射线当2﹥2时,轨迹不存在
标准方 程 焦点在轴上时: 焦点在轴上时: 注:是根据分母的大小来判断焦点在哪一坐标轴上 焦点在轴上时: 焦点在轴上时:
常数的关 系 ,, 最大, ,最大,可以
渐近线 焦点在轴上时: 焦点在轴上时:
抛物线:
图形
方程
焦点
准线
二、章节知识点回顾:
椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的标准方程,并通过分析标准方程研究这三种曲线的几何性质
1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹
2.椭圆的标准方程:, ()
3.椭圆的性质:由椭圆方程()
(1)范围: ,,椭圆落在组成的矩形中.
(2)对称性:图象关于轴对称.图象关于轴对称.图象关于原点对称原点叫椭圆的对称中心,简称中心.轴、轴叫椭圆的对称轴.从椭圆的方程中直接可以看出它的范围,对称的截距
(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点
椭圆共有四个顶点: ,加两焦点共有六个特殊点 叫椭圆的长轴,叫椭圆的短轴.长分别为 分别为椭圆的长半轴长和短半轴长椭圆的顶点即为椭圆与对称轴的交点
(4)离心率: 椭圆焦距与长轴长之比
椭圆形状与的关系:,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在时的特例 椭圆变扁,直至成为极限位置线段,此时也可认为圆为椭圆在时的特例
4椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个内常数,那么这个点的轨迹叫做椭圆 其中定点叫做焦点,定直线叫做准线,常数就是离心率
椭圆的第二定义与第一定义是等价的,它是椭圆两种不同的定义方式
5.椭圆的准线方程
对于,左准线;右准线
对于,下准线;上准线
焦点到准线的距离(焦参数)
椭圆的准线方程有两条,这两条准线在椭圆外部,与短轴平行,且关于短轴对称
6.椭圆的焦半径公式:(左焦半径),(右焦半径),其中是离心率 焦点在y轴上的椭圆的焦半径公式: ( 其中分别是椭圆的下上焦点)
焦半径公式的两种形式的区别只和焦点的左右有关,而与点在左在右无关 可以记为:左加右减,上减下加
7椭圆的参数方程
8.双曲线的定义:平面内到两定点的距离的差的绝对值为常数(小于)的动点的轨迹叫双曲线 即 这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距
在同样的差下,两定点间距离较长,则所画出的双曲线的开口较开阔(两条平行线) 两定点间距离较短(大于定差),则所画出的双曲线的开口较狭窄(两条射线) 双曲线的形状与两定点间距离、定差有关
9.双曲线的标准方程及特点:
(1)双曲线的标准方程有焦点在x轴上和焦点y轴上两种:
焦点在轴上时双曲线的标准方程为:(,);
焦点在轴上时双曲线的标准方程为:(,)
(2)有关系式成立,且
其中a与b的大小关系:可以为
10焦点的位置:从椭圆的标准方程不难看出椭圆的焦点位置可由方程中含字母、项的分母的大小来确定,分母大的项对应的字母所在的轴就是焦点所在的轴 而双曲线是根据项的正负来判断焦点所在的位置,即项的系数是正的,那么焦点在轴上;项的系数是正的,那么焦点在轴上
11.双曲线的几何性质:
(1)范围、对称性
由标准方程,从横的方向来看,直线x=-a,x=a之间没有图象,从纵的方向来看,随着x的增大,y的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线 双曲线不封闭,但仍称其对称中心为双曲线的中心
(2)顶点
顶点:,特殊点:
实轴:长为2a, a叫做半实轴长 虚轴:长为2b,b叫做虚半轴长
双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异
(3)渐近线
过双曲线的渐近线()
(4)离心率
双曲线的焦距与实轴长的比,叫做双曲线的离心率 范围:
双曲线形状与e的关系:,e越大,即渐近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它的开口就越阔
12.等轴双曲线
定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线 等轴双曲线的性质:(1)渐近线方程为:;(2)渐近线互相垂直;(3)离心率
13.共渐近线的双曲线系
如果已知一双曲线的渐近线方程为,那么此双曲线方程就一定是:或写成
14.共轭双曲线
以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线 区别:三量a,b,c中a,b不同(互换)c相同 共用一对渐近线 双曲线和它的共轭双曲线的焦点在同一圆上 确定双曲线的共轭双曲线的方法:将1变为-1
15. 双曲线的第二定义:到定点F的距离与到定直线的距离之比为常数的点的轨迹是双曲线 其中,定点叫做双曲线的焦点,定直线叫做双曲线的准线 常数e是双曲线的离心率.
16.双曲线的准线方程:
对于来说,相对于左焦点对应着左准线,相对于右焦点对应着右准线;
焦点到准线的距离(也叫焦参数)
对于来说,相对于上焦点对应着上准线;相对于下焦点对应着下准线
17双曲线的焦半径
定义:双曲线上任意一点M与双曲线焦点的连线段,叫做双曲线的焦半径
焦点在x轴上的双曲线的焦半径公式:
焦点在y轴上的双曲线的焦半径公式:
( 其中分别是双曲线的下上焦点)
18.双曲线的焦点弦:
定义:过焦点的直线割双曲线所成的相交弦
焦点弦公式:
当双曲线焦点在x轴上时,
过左焦点与左支交于两点时:
过右焦点与右支交于两点时:
当双曲线焦点在y轴上时,
过左焦点与左支交于两点时:
过右焦点与右支交于两点时:
19.双曲线的通径:
定义:过焦点且垂直于对称轴的相交弦
20 抛物线定义:
平面内与一个定点F和一条定直线的距离相等的点的轨迹叫做抛物线 定点F叫做抛物线的焦点,定直线叫做抛物线的准线
21.抛物线的准线方程:
(1), 焦点:,准线:
(2), 焦点:,准线:
(3), 焦点:,准线:
(4) , 焦点:,准线:
相同点:(1)抛物线都过原点;(2)对称轴为坐标轴;(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称 它们到原点的距离都等于一次项系数绝对值的,即
不同点:(1)图形关于X轴对称时,X为一次项,Y为二次项,方程右端为、左端为;图形关于Y轴对称时,X为二次项,Y为一次项,方程右端为,左端为 (2)开口方向在X轴(或Y轴)正向时,焦点在X轴(或Y轴)的正半轴上,方程右端取正号;开口在X轴(或Y轴)负向时,焦点在X轴(或Y轴)负半轴时,方程右端取负号
22.抛物线的几何性质
(1)范围
因为p>0,由方程可知,这条抛物线上的点M的坐标(x,y)满足不等式x≥0,所以这条抛物线在y轴的右侧;当x的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸.
(2)对称性
以-y代y,方程不变,所以这条抛物线关于x轴对称,我们把抛物线的对称轴叫做抛物线的轴.
(3)顶点
抛物线和它的轴的交点叫做抛物线的顶点.在方程中,当y=0时,x=0,因此抛物线的顶点就是坐标原点.
(4)离心率
抛物线上的点M与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e表示.由抛物线的定义可知,e=1.
23抛物线的焦半径公式:
抛物线,
抛物线,
抛物线,
抛物线,
24.直线与抛物线:
(1)位置关系:
相交(两个公共点或一个公共点);相离(无公共点);相切(一个公共点)
将代入,消去y,得到
关于x的二次方程 (*)
若,相交;,相切;,相离
综上,得:
联立,得关于x的方程
当(二次项系数为零),唯一一个公共点(交点)
当,则
若,两个公共点(交点)
,一个公共点(切点)
,无公共点 (相离)
(2)相交弦长:
弦长公式:,
(3)焦点弦公式:
抛物线,
抛物线,
抛物线,
抛物线,
(4)通径:
定义:过焦点且垂直于对称轴的相交弦 通径:
(5)若已知过焦点的直线倾斜角

(6)常用结论:


25.抛物线的参数方程:(t为参数)
三、板书设计(略)
四、课后记:
图们市三高中 第 1页(共10页)高中数学教案 第8章圆锥曲线方程(第8课时) 战永捷
课 题:8.3双曲线及其标准方程(一)
教学目的:
1.使学生掌握双曲线的定义,熟记双曲线的标准方程,并能初步应用;
2.通过对双曲线标准方程的推导,提高学生求动点轨迹方程的能力;
3.使学生初步会按特定条件求双曲线的标准方程;
4.使学生理解双曲线与椭圆的联系与区别以及特殊情况下的几何图形(射线、线段等);
5.培养学生发散思维的能力
教学重点:双曲线的定义、标准方程及其简单应用
教学难点:双曲线标准方程的推导及待定系数法解二元二次方程组
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
内容分析:
?“双曲线及其标准方程”是在讲完了“圆的方程”、“椭圆及其标准方程”之后,学习又一类圆锥曲线知识,也是中学解析几何中学习的重要的内容之一,它在社会生产、日常生活和科学技术止有着广泛的应用,大纲明确要求学生必须熟练掌握
本节教材仍是继续训练学生用坐标法解决方程与曲线有关问题的重要内容,对它的教学将帮助学生进一步熟悉和掌握求曲线方程的一般方法
双曲线的定义和标准方程是本节的基本知识,所以必须掌握 而掌握好双曲线标准方程的推导过程又是理解和记忆标准方程的关键 应用双曲线的有关知识解决数学问题和实际应用问题是培养学生基本技能和基本能力的必要环节 坐标法是中学数学学习中必须掌握的一个重要方法,它充分体现了化归思想、数形结合思想,是用以解决实际问题的一个重要的数学工具 犹如前面学习的圆和圆锥曲线一样,双曲线也是一种动点的轨迹 双曲线和其方程分属于几何和代数这两个分立的体系,但是通过直角坐标系人们又将它们很好地结合在一起 因此我们要充分利用这节教材对学生进行好思想教育
双曲线的标准方程,内容可分为二个课时,第一课时内容主要是双曲线的定义和标准方程以及课本中的例1;第二课时主要是课本中的例2、例3及几个变式例题
教学过程:
一、复习引入:
1 椭圆定义:
平面内与两个定点的距离之和等于常数(大于)的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距
在同样的绳长下,两定点间距离较长,则所画出的椭圆较扁(线段)两定点间距离较短,则所画出的椭圆较圆(圆)椭圆的形状与两定点间距离、绳长有关
2.椭圆标准方程:
(1) (2) 其中
二、讲解新课:
1.双曲线的定义:平面内到两定点的距离的差的绝对值为常数(小于)的动点的轨迹叫双曲线 即
这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距
概念中几个容易忽略的地方:“平面内”、“距离的差的绝对值”、“常数小于”
在同样的差下,两定点间距离较长,则所画出的双曲线的开口较开阔(两条平行线) 两定点间距离较短(大于定差),则所画出的双曲线的开口较狭窄(两条射线) 双曲线的形状与两定点间距离、定差有关
2.双曲线的标准方程:
根据双曲线的定义推导双曲线的标准方程:推导标准方程的过程就是求曲线方程的过程,可根据求动点轨迹方程的步骤,求出双曲线的标准方程 过程如下:(1)建系设点;(2)列式;(3)变换;(4)化简;(5)证明
取过焦点的直线为轴,线段的垂直平分线为轴
设P()为双曲线上的任意一点,双曲线的焦距是2()
则 ,又设M与距离之差的绝对值等于2(常数),


化简,得:

由定义
令代入,得:,
两边同除得:,
此即为双曲线的标准方程
它所表示的双曲线的焦点在轴上,焦点是,
其中
若坐标系的选取不同,可得到双曲线的不同的方程,如焦点在轴上,则焦点是,将互换,得到
,此也是双曲线的标准方程
3.双曲线的标准方程的特点:
(1)双曲线的标准方程有焦点在x轴上和焦点y轴上两种:
焦点在轴上时双曲线的标准方程为:(,);
焦点在轴上时双曲线的标准方程为:(,)
(2)有关系式成立,且
其中a与b的大小关系:可以为
4.焦点的位置:从椭圆的标准方程不难看出椭圆的焦点位置可由方程中含字母、项的分母的大小来确定,分母大的项对应的字母所在的轴就是焦点所在的轴 而双曲线是根据项的正负来判断焦点所在的位置,即项的系数是正的,那么焦点在轴上;项的系数是正的,那么焦点在轴上
三、讲解范例:
例1 判断下列方程是否表示双曲线,若是,求出三量的值
① ②
③ ④ ()
分析:双曲线标准方程的格式:平方差,项的系数是正的,那么焦点在轴上,项的分母是;项的系数是正的,那么焦点在轴上,项的分母是
解:①是双曲线, ;
② 是双曲线, ;
③是双曲线, ;
④是双曲线,
例2 已知双曲线两个焦点的坐标为,双曲线上一点P到的距离之差的绝对值等于6,求双曲线标准方程
解:因为双曲线的焦点在轴上,所以设它的标准方程为
(,)
∵ ∴ ∴
所求双曲线标准方程为
四、课堂练习:
1.求=4,=3,焦点在轴上的双曲线的标准方程
2.求=2,经过点(2,-5),焦点在轴上的双曲线的标准方程
3.证明:椭圆与双曲线的焦点相同
4.若方程表示焦点在轴上的双曲线,则角所在象限是( )
A、第一象限 B、第二象限 C、第三象限 D、第四象限
5.设双曲线上的点P到点的距离为15,则P点到的距离是( )
A.7 B.23 C.5或23 D.7或23
练习答案:1. ; 2. ;
3. ,
;
4. D.表示焦点在轴上的双曲线
,所以选D. 5. D. 7或23
五、小结 :双曲线的两类标准方程是焦点在轴上,焦点在轴上 有关系式成立,且 其中a与b的大小关系:可以为
六、课后作业:
七、板书设计(略)
八、课后记:
图们市三高中 第 1页(共5页)高中数学教案 第8章圆锥曲线方程(第14课时) 战永捷
课 题:8.5抛物线及其标准方程(二)
教学目的:
1.能根据题设,求出抛物线的标准方程、焦点、准线
2.使学生能熟练地运用坐标,进一步提高学生“应用数学”的水平
3.结合教学内容,使学生牢固树立起对立统一的观点
教学重点:标准方程及其简单应用
教学难点:抛物线定义的灵活运用,解直线与抛物线有关的综合问题
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1 椭圆的第定义:一动点到定点的距离和它到一条定直线的距离的比是一个内的常数,那么这个点的轨迹叫做椭圆 其中定点叫做焦点,定直线叫做准线,常数就是离心率
2. 双曲线的第二定义:一动点到定点F的距离与到一条定直线的距离之比是一个内的常数,那么这个点的轨迹叫做双曲线 其中定点叫做双曲线的焦点,定直线叫做双曲线的准线 常数e是双曲线的离心率.
3.抛物线定义:
平面内与一个定点F和一条定直线的距离相等的点的轨迹叫做抛物线 定点F叫做抛物线的焦点,定直线叫做抛物线的准线
4.抛物线的标准方程:
图形
方程
焦点
准线
相同点:(1)抛物线都过原点;(2)对称轴为坐标轴;(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称 它们到原点的距离都等于一次项系数绝对值的,即
不同点:(1)图形关于X轴对称时,X为一次项,Y为二次项,方程右端为、左端为;图形关于Y轴对称时,X为二次项,Y为一次项,方程右端为,左端为 (2)开口方向在X轴(或Y轴)正向时,焦点在X轴(或Y轴)的正半轴上,方程右端取正号;开口在X轴(或Y轴)负向时,焦点在X轴(或Y轴)负半轴时,方程右端取负号
二、讲解范例:
例1 点M与点F(4,0)的距离比它到直线的距离小1,求点M的轨迹方程
解析:可知原条件M点到F(4,0)和到x=-4距离相等,由抛物线的定义,点M的轨迹是以F(4,0)为焦点,x=-4为准线的抛物线.∴
所求方程是
例2 斜率为1的直线经过抛物线的焦点,与抛物线相交于两点A、B,求线段AB的长
分析:思路一:解方程组,得交点的坐标,利用两点间距离公式解之
思路二:同思路一相同,但不解方程组,利用根与系数的关系,解之
思路三:利用根与系数关系及抛物线的定义来解之
思路四:利用弦长公式解之(以后给出)
解析:如图,由抛物线的标准方程可知,抛物线焦点的坐标为F(1,0),                                 所以直线AB的方程为
即 ①
将方程①代入抛物线方程,得
化简得
解这个方程,得 ,
将,代入方程①中,得

即A,B的坐标分别是(,),(,)

另法:在图中,由抛物线的定义可知,|AF|等于点A到准线x=-1的距离|AD|,而|AD|=+1.同理|BF|=|BC|=+1,于是得
|AB|=|AF+|BF|=++2.
由此可以看到,本题在得到方程后,
根据根与系数的关系可以直接得到 +=6.
于是立即可以求出|AB|=6+2=8.
例3 已知抛物线的顶点在原点,对称轴为x轴,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的方程和m的值
解析:由 M(-3,m)到焦点的距离等于5
M(-3,m)到准线的距离等于5
所求抛物线的方程为
三、课堂练习:
1.抛物线y2=ax(a≠0)的准线方程是 ( )
(A)x= - (B)x= (C)x= - (D)x=
翰林汇2.已知M(m,4)是抛物线x2=ay上的点,F是抛物线的焦点,若|MF|=5,则此抛物线的焦点坐标是 ( )
(A)(0,-1) (B)(0,1) (C)(0,-2) (D)(0,2)翰林汇
3.抛物线的顶点在原点,对称轴为x轴,焦点在直线3x-4y-12=0上,此抛物线的方程是 ( )
(A)y2=16x (B)y2=12x (C)y2= -16x (D)y2= -12x翰林汇
4.抛物线2y2+x+=0的焦点坐标是 ( )
(A)(-,0) (B)(0,-) (C)(-,0) (D)(0,-)
翰5.过点(0,1)且与抛物线y2=x只有一个公共点的直线有 ( )
(A)一条 (B)两条 (C)三条 (D)无数条
翰林6.若直线3x+4y+24=0和点F(1,-1)分别是抛物线的准线和焦点,则此抛物线的顶点坐标是 ( )
(A)(1,2) (B)(4,3) (C) (D)(-2,-5)翰林汇
7.过抛物线y2=4x的焦点F作倾斜角为的直线交抛物线于A、B两点,则AB的长是 ( )
(A) (B)4 (C)8 (D)2
练习的答案:1 A 翰林汇2 B 翰林汇3 A 翰林汇4 C 翰林汇5 C 翰林汇6 C 7 C
四、小结 :本课主要讲解了四道例题,从不同的角度对如何灵活运用抛物线的定义、标准方程、焦点、准线等知识解决有关问题进行了巩固训练。
五、课后作业:
1.选择题
(1)已知抛物线方程为y=ax2(a>0),则其准线方程为(   )
(A) (B) (C) (D)
(2)抛物线(m≠0)的焦点坐标是(   )(A) (0,)或(0,)(B) (0,)(C) (0,)或(0,)(D) (0,)
(3)焦点在直线3x-4y-12=0上的抛物线标准方程是(   )
(A) y2=16x或x2=16y (B) y2=16x或x2=12y
(C) x2=-12y或y2=16x (D) x2=16y或y2=-12x
2.根据下列条件写出抛物线的标准方程(   )
(1)过点(-3,4)
(2)过焦点且与x轴垂直的弦长是16
3.点M到点(0,8)的距离比它到直线y=-7的距离大1,求M点的轨迹方程.
4.抛物线y2=16x上的一P到x轴的距离为12,焦点为F,求|PF|的值.
答案:
1.(1)D (2)B (3)C
2.(1)或 (2)y2=±16x
3.x2=32y 4.13?
六、板书设计(略)
七、测试题(时间10分钟,满分10分)
(一).选择题(每小题2分,共4分)
1.抛物线y=2x2的焦点坐标是(   )
(A) (0,) (B) (0,) (C) (,0) (D) (,0)
2.以椭圆的中心为顶点,左准线为准线的抛物线标准方程(  )(A) y2=25x (B) (C) (D)
(二).填空题(每小题2分,共4分)
3.顶点在原点,焦点在y轴上,且过点P(4,2)的抛物线方程是       
4.平面上的动点P到点A(0,-2)的距离比到直线l:y=4的距离小2,则动点P的轨迹方程是       
(三).解答题(2分)
5.已知抛物线y2=x上的点M到准线的距离等于它到顶点的距离,求P点的坐标.
测试题答案:1.B 2.A 3.x2=8y 4.x2=-8y 5.(,)
八、课后记:
图们市三高中 第 1页(共5页)高中数学教案 第8章圆锥曲线方程(第3课时) 战永捷
课 题:8.1椭圆及其标准方程(三)
教学目的:
1.使学生理解轨迹与轨迹方程的区别与联系
2.使学生掌握转移法(也称代换法,中间变量法,相关点法)求动点轨迹方程的方法与椭圆有关问题的解决
教学重点:运用中间变量法求动点的轨迹
教学难点:运用中间变量法求动点的轨迹
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1 椭圆定义:
平面内与两个定点的距离之和等于常数(大于)的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距
注意:椭圆定义中容易遗漏的两处地方:(1)两个定点---两点间距离确定(2)绳长--轨迹上任意点到两定点距离和确定
在同样的绳长下,两定点间距离较长,则所画出的椭圆较扁(线段)两定点间距离较短,则所画出的椭圆较圆(圆)椭圆的形状与两定点间距离、绳长有关(为下面离心率概念作铺垫)
2.椭圆标准方程:
(1)
它所表示的椭圆的焦点在轴上,焦点是,中心在坐标原点的椭圆方程 其中
(2)
它所表示的椭圆的焦点在轴上,焦点是,中心在坐标原点的椭圆方程 其中
在与这两个标准方程中,都有的要求,如方程就不能肯定焦点在哪个轴上;分清两种形式的标准方程,可与直线截距式类比,如中,由于,所以在轴上的“截距”更大,因而焦点在轴上(即看分母的大小)
二、讲解范例:
例1 如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P向轴作垂线段PPˊ,求线段PPˊ的中点M的轨迹(若M分 PPˊ之比为,求点M的轨迹)
解:(1)当M是线段PPˊ的中点时,设动点的坐标为,则的坐标为
因为点在圆心为坐标原点半径为2的圆上,
所以有 ,即
所以点的轨迹是椭圆,方程是
(2)当M分 PPˊ之比为时,设动点的坐标为,则的坐标为
因为点在圆心为坐标原点半径为2的圆上,
所以有 ,即
所以点的轨迹是椭圆,方程是
例2 已知轴上的一定点A(1,0),Q为椭圆上的动点,求AQ中点M的轨迹方程
解:设动点的坐标为,则的坐标为
因为点为椭圆上的点,
所以有 ,即
所以点的轨迹方程是
例3 长度为2的线段AB的两个端点A、B分别在轴、轴上滑动,点M分AB的比为,求点M的轨迹方程
解:设动点的坐标为,则的坐标为 的坐标为
因为,
所以有 ,即
所以点的轨迹方程是
例4 已知定圆,动圆M和已知圆内切且过点P(-3,0),求圆心M的轨迹及其方程
分析:由两圆内切,圆心距等于半径之差的绝对值 根据图形,用数学符号表示此结论:
上式可以变形为,又因为,所以圆心M的轨迹是以P,Q为焦点的椭圆
解 已知圆可化为:
圆心Q(3,0),,所以P在定圆内 设动圆圆心为,则为半径 又圆M和圆Q内切,所以,
即 ,故M的轨迹是以P,Q为焦点的椭圆,且PQ中点为原点,所以,,故动圆圆心M的轨迹方程是:
三、课堂练习:
(1)已知椭圆上一点P到椭圆的一个焦点的距离为3,则P到另一个焦点的距离是 ( )
A.2 B.3 C.5 D.7 答案:D
(2)已知椭圆方程为,那么它的焦距是 ( )
A.6 B.3 C.3 D. 答案:A
(3)如果方程表示焦点在轴上的椭圆,那么实数k的取值范围是
A.(0,+∞) B.(0,2) C.(1,+∞) D.(0,1) 答案:D
(4)已知椭圆的两个焦点坐标是F1(-2,0),F2(2,0),并且经过点P(),则椭圆标准方程是_____ 答案:
(5)过点A(-1,-2)且与椭圆的两个焦点相同的椭圆标准方程是____ 答案:
(6)过点P(,-2),Q(-2,1)两点的椭圆标准方程是______
答案:
四、小结 :用转移法求轨迹方程的方法 转移法是在动点的运动随着另一个点的运动而运动,而另一个点又在有规律的曲线上运动,这种情况下才能应用的,运用这种方法解题的关键是寻求两动点的坐标间的关系
五、课后作业:
1.已知圆=1,从这个圆上任意一点P向轴作垂线段PP′,求线段PP′的中点M的轨迹.
选题意图:训练相关点法求轨迹方程的方法,考查“通过方程,研究平面曲线的性质”这一解析几何基本思想.
解:设点M的坐标为,则点P的坐标为.
∵P在圆上,∴,即.
∴点M的轨迹是一个椭圆
2.△ABC的两个顶点坐标分别是B(0,6)和C(0,-6),另两边AB、AC的斜率的乘积是-,求顶点A的轨迹方程.?
选题意图:巩固求曲线方程的一般方法,建立借助方程对应曲线后舍点的解题意思,训练根据条件对一些点进行取舍.
解:设顶点A的坐标为.
依题意得 ,
∴顶点A的轨迹方程为 .
说明:方程对应的椭圆与轴有两个交点,而此两交点为(0,-6)与(0,6)应舍去.
3.已知椭圆的焦点是,P为椭圆上一点,且||是||和||的等差中项.
(1)求椭圆的方程;
(2)若点P在第三象限,且∠=120°,求.
选题意图:综合考查数列与椭圆标准方程的基础知识,灵活运用等比定理进行解题.
解:(1)由题设||+||=2||=4
∴, 2c=2, ∴b=
∴椭圆的方程为.
(2)设∠,则∠=60°-θ
由正弦定理得:
由等比定理得:
整理得: 故
.
说明:曲线上的点与焦点连线构成的三角形称曲线三角形,与曲线三角形有关的问题常常借助正(余)弦定理,借助比例性质进行处理.对于第二问还可用后面的几何性质,借助焦半径公式余弦定理把P点横坐标先求出来,再去解三角形作答
六、板书设计(略)
七、课后记:
图们市三高中 第 1页(共7页)