班海数学精批——一本可精细批改的教辅
26.2 实际问题与反比例函
26.2.1 建立反比例函数模型解实际问题
教学目标:
1.通过探索,使学生理解二次函数与一元二次方程、一元二次不等式之间的联系。
2.使学生能够运用二次函数及其图象、性质解决实际问题,提高学生用数学的意识。
3.进一步培养学生综合解题能力,渗透数形结合思想。
重点难点:
重点:使学生理解二次函数与一元二次方程、一元二次不等式之间的联系,能够运用二次函数及其图象、性质去解决实际问题是教学的重点。
难点:进一步培养学生综合解题能力,渗透数形结合的思想是教学的难点.
教学过程:
一、引言
在现实生活中,我们常常会遇到与二次函数及其图象有关的问题,如拱桥跨度、拱高计算等,利用二次函数的有关知识研究和解决这些问题,具有很现实的意义。本节课,请同学们共同研究,尝试解决以下几个问题。
二、探索问题
问题1:某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水。连喷头在内,柱高为0.8m。水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示。
根据设计图纸已知:如图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是y=-x2+2x+。
(1)喷出的水流距水平面的最大高度是多少
(2)如果不计其他的因素,那么水池至少为多少时,才能使喷出的水流都落在水池内
教学要点
1.让学生讨论、交流,如何将文学语言转化为数学语言,得出问题(1)就是求函数y=-x2+2x+最大值,问题(2)就是求如图(2)B点的横坐标;
2.学生解答,教师巡视指导;
3.让一两位同学板演,教师讲评。
问题2:一个涵洞成抛物线形,它的截面如图(3)所示,现测得,当水面宽AB=1.6m时,涵洞顶点与水面的距离为2.4m。这时,离开水面1.5m处,涵洞宽ED是多少 是否会超过1m
教学要点
1.教师分析:根据已知条件,要求ED的宽,只要求出FD的长度。在如图(3)的直角坐标系中,即只要求出D点的横坐标。因为点D在涵洞所成的抛物线上,又由已知条件可得到点D的纵坐标,所以利用抛物线的函数关系式可以进一步算出点D的横坐标。
2.让学生完成解答,教师巡视指导。
3.教师分析存在的问题,书写解答过程。
解:以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立直角坐标系。
这时,涵洞的横截面所成抛物线的顶点在原点,对称轴为y轴,开口向下,所以可设它的 函数关系式为:y=ax2 (a<0) (1)
因为AB与y轴相交于C点,所以CB==0.8(m),又OC=2.4m,所以点B的坐标是(0.8,-2.4)。
因为点B在抛物线上,将它的坐标代人(1),得 -2.4=a×0.82 所以:a=-
因此,函数关系式是 y=-x2 (2)
因为OF=1.5m,设FD=x1m(x1>0),则点D坐标为(x1,-1.5)。因为点D的坐标在抛物线上,将它的坐标代人(2),得 -1.5=-x12 x12= x1=±
x1=-不符合假设,舍去,所以x1=。
ED=2FD=2×x1=2×=≈×3.162≈1.26(m)
所以涵洞ED是m,会超过1m。
问题3:画出函数y=x2-x-3/4的图象,根据图象回答下列问题。
(1)图象与x轴交点的坐标是什么;
(2)当x取何值时,y=0 这里x的取值与方程x2-x-=0有什么关系
(3)你能从中得到什么启发
教学要点
1.先让学生回顾函数y=ax2+bx+c图象的画法,按列表、描点、连线等步骤画出函数y=x2-x-的图象。
2.教师巡视,与学生合作、交流。
3.教师讲评,并画出函数图象,如图(4)所示。
4.教师引导学生观察函数图象,回答(1)提出的问题,得到图象与x轴交点的坐标分别是(-,0)和(,0)。
5.让学生完成(2)的解答。教师巡视指导并讲评。
6.对于问题(3),教师组织学生分组讨论、交流,各组选派代表发表意见,全班交流,达成共识:从“形”的方面看,函数y=x2-x-的图象与x轴交点的横坐标,即为方程x2-x-=0的解;从“数”的方面看,当二次函数y=x2-x-的函数值为0时,相应的自变量的值即为方程x2-x-=0的解。更一般地,函数y=ax2+bx+c的图象与x轴交点的横坐标即为方程ax2+bx+c=0的解;当二次函数y=ax2+bx+c的函数值为0时,相应的自变量的值即为方程ax2+bx+c=0的解,这一结论反映了二次函数与一元二次方程的关系。
三、试一试
根据问题3的图象回答下列问题。
(1)当x取何值时,y<0 当x取何值时,y>0
(当-<x<时,y<0;当x<-或x>时,y>0)
(2)能否用含有x的不等式来描述(1)中的问题 (能用含有x的不等式采描述(1)中的问题,即x2-x-<0的解集是什么 x2-x->0的解集是什么 )
想一想:二次函数与一元二次不等式有什么关系
让学生类比二次函数与一元二次不等式方程的关系,讨论、交流,达成共识:
(1)从“形”的方面看,二次函数y=ax2+bJ+c在x轴上方的图象上的点的横坐标,即为一元二次不等式ax2+bx+c>0的解;在x轴下方的图象上的点的横坐标.即为一元二次不等式ax2+bx+c<0的解。
(2)从“数”的方面看,当二次函数y=ax2+bx+c的函数值大于0时,相应的自变量的值即为一元二次不等式ax2+bx+c>0的解;当二次函数y=ax2+bx+c的函数值小于0时,相应的自变量的值即为一元二次不等式ax2+bc+c<0的解。这一结论反映了二次函数与一元二次不等式的关系。
四、课堂练习: P23练习1、2。
五、小结:
1.通过本节课的学习,你有什么收获 有什么困惑
2.若二次函数y=ax2+bx+c的图象与x轴无交点,试说明,元二次方程ax2+bx+c=0和一元二次不等式ax2+bx+c>0、ax2+bx+c<0的解的情况。
六、作业:
1. 二次函数y=x2-3x-18的图象与x轴有两交点,求两交点间的距离。
2.已知函数y=x2-x-2。
(1)先确定其图象的开口方向、对称轴和顶点坐标,再画出图象
(2)观察图象确定:x取什么值时,①y=0,②y>0;③y<0。
3.学校建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA。O恰好在水面中心,布置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA任意平面上的抛物线如图(5)所示,建立直角坐标系(如图(6)),水流喷出的高度y(m)与水面距离x(m)之间的函数关系式是y=-x2+x+,请回答下列问题:
(1)花形柱子OA的高度;
(2)若不计其他因素,水池的半径至少要多少米,才能使喷出的水不至于落在池外
4.如图(7),一位篮球运动员跳起投篮,球沿抛物线y=-x2+3.5运行,然后准确落人篮框内。已知篮框的中心离地面的距离为3.05米。
(1)球在空中运行的最大高度为多少米
(2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少
26.2.2 建立反比例函数的模型解跨学科问题
教学目标
1. 能灵活列反比例函数表达式解决一些实际问题.
2. 能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题.
3. 体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.
4. 体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。
教学重点
1. 掌握从物理问题中建构反比例函数模型.
教学难点
2. 从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想.
教学过程
一、创设问题情境,引入新课
活动
问题:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用.下面的例子就是其中之一。
1. 在某一电路中,保持电压不变,电流I和电阻R成反比例,当电阻R=5欧姆时,电流I=2I.
(1) 求I与R之间的函数关系式;
(2) 当电流I=0.5时,求电阻R的值.
师生行为
1. 可由学生独立思考,领会反比例函数在物理学中的综合应用.
2. 教师应给“学困生” 一点物理学知识的引导.
分析:从题目中提供的信息看变量I与R之间的反比例函数关系,可设出其表达式,再由已知条件(I与R的一对对应值)得到字母系数k的值。
解:设∵R=5,I=2,于是,所以k=10,∴
(2)当I=0.5时,(欧姆)
“给我一支点,我可以把地球撬动.”这是哪一位科学家的名言 这里瘟涵着什么样的原理呢 这是古希腊科学家阿基米得的名言。公元前3世纪,古希腊科学家阿基米得发现了著名的“杠杆定律”:若两物体与支点的距离反比与其重量,则杠杆平衡,通俗一点可以描述为
阻力×阻力臂=动力×动力臂
下面我们就来看一例子。
二、讲授新课
活动2
【例3】小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米,
(1) 动力F与动力臂l有怎样的函数关系式?当动力臂为1。5米时,撬动石头至少需要多大的力?
(2) 若想使动力F不超过题(1)中所用力的一半,遇动力臂至少要加长多少?
师生行为:先由学生根据 “杠杆定律”解决上述问题。教师可引导学生揭示“杠杆平衡”与“反比例函数”之间的关系。教师在此活动中应重点关注:
1 学生能否主动用“杠杆定律”中杠杆定律中杠杆平衡的条件去理解实际问题,从而建立与反比例函数的关系;
2 学生能否面对困难,认真思考,寻找解题的途径;
3 学生能否积极主动地参与数学活动,对数学和物理有着浓厚的兴趣。
分析:“撬动石头”就意味着达到了“杠杆平衡”,因此可用“杠杆定律”来解决此问题。
解:(1)根据 “杠杆定律”有
。得。
当l=1.5时,.
因此,撬动石头至少需要400牛顿的力。
(3) 若想使动力F不超过题(1)中所用的一半,即不超过200牛,根据“杠杆定律”有
F·=600,。
当时,
3-1.5=1.5(米)
因此,若想用力不超过400牛顿的一半,则动力臂至少要加长1.5米。
想想还有哪些方法可以解决这个问题?
思考:用反比例函数的知识解释:在我们使用撬棍时,为什么动力臂越长越省力?
总结:其实反比例函数在实际运用中非常广泛。例如在解决经济预算中的应用。
活动3
问题:某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)元成反比例。又当x=0.65时,y=0.8。
(1) 求y与x之间的函数关系式;
(2) 若每度电的成本价0.3元,电价调至0.6元时,请你预算一下本年度电力部门的纯收入是多少?
师生行为:由学生先独立思考,然后小组内讨论完成。教师应给以“学困生”一定的帮助。
解:(1)∵y与x成反比例,
∴设.
把x=0.65,y=0.8。代入,得
解得k=0.2
∴。
∴y与x之间的函数关系为
(2)根据题意,本年度电力部门的纯收入为
(亿元)
答:本年度的纯收入为0.6亿元。
师生共析:(1)由题目提供的信息知y与x之间是反比例函数关系,把x-0.4看成一个变量,于是可设出表达式,再由题目的条件x=0.65时,y=0.8得出字母系数的值;
(2)纯收入=总收入-总成本。
三、巩固提高
活动4
四、课时小结
活动5
你对本节内容有哪些认识?重点掌握利用函数关系解决实际问题,首先列出函数关系式,利用待定系数法求出解析式,再根据解析式解得。
师生行为:学生可分小组活动,在小组内交流收获,然后由小组代表在全班交流。教师组织学生小结。
反比列函数与现实生活联系非常紧密特别是为讨论物理中的一些量之间的关系打下良好的基础。用数学模型来解释物理量之间的关系浅显易懂,同时不仅要注意跨学科间的综合,而本学科之间的整合也尤为重要,例如方程、不等式、函数间的不可分割关系。
感谢您下载使用【班海】教学资源。班海——老师们都在免费用的数学作业精细批改微信小程序!
一键发布配套作业 & AI智能精细批改
(任务-发布任务-选择章节)