【班海精品】北师大版(新)八年级下-6.2平行四边形的判定【优质教案】

文档属性

名称 【班海精品】北师大版(新)八年级下-6.2平行四边形的判定【优质教案】
格式 doc
文件大小 105.0KB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2023-01-13 10:22:42

图片预览

文档简介

班海数学精批——一本可精细批改的教辅
2.平行四边形的判定
由边的关系判定平行四边形
教学目的
1.使学生掌握用平行四边形的定义判定一个四边形是平行四边形;
2.理解并掌握用二组对边分别相等的四边形是平行四边形
3.能运这两种方法来证明一个四边形是平行四边形。
教学重点和难点
重点:平行四边形的判定定理;
难点:掌握平行四边形的性质和判定的区别及熟练应用。
教学过程
(一)复习提问:
1. 什么叫平行四边形?平行四边形有什么性质?(学生口答,教师板书)
2. 将以上的性质定理,分别用命题形式叙述出来。(如果……那么……)
根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?
(二)新课
1. 平行四边形的判定:
方法一(定义法):两组对边分别平行的四边形的平边形。
几何语言表达定义法:
∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形
解析:一个四边形只要其两组对边分别互相平行,
则可判定这个四边形是一个平行四边形。
活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。
方法二:两组对边分别相等的四边形是平行四边形。
设问:这个命题的前提和结论是什么?
已知:四边形ABCD中,AB=CD,AD=BC
求证:四边ABCD是平行四边形。
分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结BD。易证三角形全等。(见图1)
板书证明过程。
小结:用几何语言表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为:
判定一:二组对边分别相等的四边形是平行四边形
∵AB=CD,AD=BC,∴四边形ABCD是平行四边形
练习:课本P103练习题第1题。
例题讲解:
例1 已知:如图3,E、F分别为平行四边形ABCD两边AD、BC的中点,连结BE、DF。
求证:
分析:由我们学过平行四边形的性质中,对角
相等,得若证明四边形EBFD为平行四边形,便可得到,哪么如何证明该四边形为平行边形呢?可通过证明ΔABE≌ΔCDF得BE=DF;由AD=BC,E、F分别为AD和BC的中点得ED=FB。
练习:2. 已知如图7,E、F、G、H分别是平行四边形ABCD的边AB、BC、CD、DA上的点,且AE=CG,BF=DH。
求证:四边形EFGH是平行四边形。
  (让学生板演)
图7
本课小结:一个四边形二组对边分别平行或者相等的四边形是平行四边形这个判定定理来判定一个四边形是平行四边形。
作业布置:课本P100第4题、第7题。
由对角线的关系判定平行四边形
教学目的:
1、掌握用“对角线互相平分的四边形是平行四边形”这一判定定理,会用这些定理进行有关的论证和计算;
2.理解“两组对角分别相等的四边形是平行四边形”这一判定定理,会用这些定理进行有关的论证和计算;
3.培养学生的观察能力、动手能力自学能力、计算能力、逻辑思维能力;
教学重点:理解掌握“对角线互相平分的四边形是平行四边形,两组对角分别相等的四边形是平行四边形”这一判定定理。
教学难点:判定定理的证明方法及运用。
教学过程:
一.复习导入
1.用定义法证明一个四边形是平行四边形时,要什么条件?
2.用所学的判定方法一判定一个四边形的平行四边形的条件是什么?
3.平行四边形的对角线互相平分的逆命题如何表达?是否是真命题?
二、新课讲解:
设问:“对角线互相平分的四边形是平行四边形。”这一命题的前提什么?结论又是什么?
活动:用事先准备好的纸条按课本探究方法做,让学生判定这个四边形是否是平行四边形。
判定方法三:对角线互相平分的四边形是平行四边形。
这个方法的前提是什么?结论又是什么?
已知:如图:在四边形ABCD中,AC、BD相交于O,OA=OC,OB=OD。
求证:四边形ABCD是平行四边形。
分析:证明这个四边形是平行四边形的方法有:(1)两组对边分别相等;(2)平行四边形的定义:两组对边分别平行。(较简单的)
板书证过程。
小结:由刚才证明可得,只要有对角线互相
平分,可判定这个四边形是平行四边形。
几何语言表达:∵OA=OC, OB= OD ∴四边形ABCD是平行四边形
例题讲 解:课本P96例3。
分析:由题意可得OB=OD,再由OA=OF,AE=AF,可得OE=OF。可证四边形EBFD是平行四边形。
设问:若是两组对角分别相等的四边形,是不是平行四边形?前提是什么?结论是什么?
A B
已知:在四边形ABCD中,∠A =∠C
∠B=∠D。 D C
求证:四边形ABCD是平行四边形(让学生板书,然后小结)
练习:延长三角形ABC的中线BD至E,
使DE=BD,连结AE、CE,如图,
求证:∠BAE=∠BCE。
证明方法:由对角线互相平分可证四边形ABCE为平行四边形,可得∠BAE=∠BCE。
本课小结: 目前,我们研究平行四边形的哪些性质和判定:
平行四边形的性质:对边平行;对边相等;对角线互相平分;夹在平行线间的平行线段相等;对角相等;邻角互补;
平行四边形的判定:两组对边平行;两组对边相等;两组对角相等;对角线互相平分的四边形;
作业布置:
1、熟记判定定理;
2.课本作业
平行线间的距离
教学目标:
1、理解平行线之间的距离的概念。
2、能够测量两条平行线之间的距离,会画到已知直线已知距离的平行线。
3、通过平行线之间的距离转化为点到直线的距离,使学生初步体验转化的数学思想。
教学重点:理解平行线之间的距离的概念,掌握它与点到直线的距离的关系。
教学难点:画到已知直线已知距离的平行线。
教学过程:
一、 准备知识
1、点到直线距离。
2、直线外一点与直线上各点连结的所有线段中,垂线段最短。
3、三条直线的平行关系。
二、探究新知
1、做一做。
测量自己的数学课本的宽度。要注意什么问题?刻度尺要与课本两边互相垂直。
2、公垂线、公垂线段的概念
   与两条平行直线都垂直的直线,叫做这两条平行直线
的公垂线。如图形中的直线AB与CD都是公垂线,这时连
结两个垂足的线段,叫做这两条平行直线的公垂线段。图中
的线段AB和CD。
两平行线的公垂线段也可以看成是两平行直线中一条上
的一点到另一条的垂线段。
  3、公垂线段定理:两平行线的所有公垂线段都相等。
4、两平行线上各取一点连结而成的所有线段中,公垂线
段最短。
如图m∥n,直线m、n上各取一点A、B,连结AB。
再过A作n线段的垂线段AC,垂足为C,则有AC<AB。
从而得到上述定理。
5、两平行间的距离:两平行线的公垂线段的长度。
6、范例分析
例 如图设直线a、b、c是三条平行直线。已知
a与b的距离为5厘米,b与c的距离为2厘米,求a与
c的距离。
解:在直线a上任取一点A,过A作AC⊥a,分别交
b、c于B、C两点,则AB、BC、AC分别表示a与b,
b与c,a与c的公垂线段。
AC=AB+BC=5+2=7,因此a与c的距离为7厘米。
三、小结练习
1、练习
2、课堂小结
四、布置作业
后记:
感谢您下载使用【班海】教学资源。班海——老师们都在免费用的数学作业精细批改微信小程序!
一键发布配套作业 & AI智能精细批改
(任务-发布任务-选择章节)