班海数学精批——一本可精细批改的教辅
16.2 二次根式的乘除
二次根式的乘法
【知识与技能】
理解=(a≥b,b≥0),并利用它们进行计算和化简.
【过程与方法】
由具体数据发现规律,导出=(a≥0,b≥0)并运用它进行计算.
【情感态度】
通过探究=(a≥0,b≥0),培养特殊到一般的探究精神,培养学生对事物规律的观察发现能力,激发学生的学习兴趣.
【教学重点】
=(a≥0,b≥0),及它的运用.
【教学难点】
发现规律,导出=(a≥0,b≥0).
一、情境导入,初步认识
1.填空:
参照上面的结果,用“>”、“<”或“=”填空.
2.利用计算器计算填空.
【教学说明】由学生通过具体数据,发现规律,导出=(a≥0,b≥0).
二、思考探究,获取新知
(学生活动)让3、4个同学上台总结规律.
教师点评:(1)被开方数都是正数;(2)两个二次根式的积等于这样一个二次根式,它的被开方数等于前两个二次根式的被开方数的积.
一般地,对二次根式的乘法规定为
=(a≥0,b≥0).:
【教学说明】引导学生应用公式
=(a≥0,b≥0).
三、运用新知,深化理解
1.直角三角形两条直角边的长分别为15cm和12cm,那么此直角三角形斜边长是( )
A.3cm B.3cm C.9cm D.27cm
【答案】1.B 2.C 3.A 4.D
【教学说明】可由学生抢答完成,再由教师总结归纳.
四、师生互动,课堂小结
1.由学生小组讨论汇报通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.
2.教师总结归纳二次根式的乘法规定=(a≥0,b≥0).
【教学说明】教师引发学习回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.
1.布置作业:从教材“习题”中选取.
2.完成练习册中本课时练习的“课时作业”部分.
这节课教师引导学生通过具体数据,发现规律,导出=(a≥0,b≥0),并学会它的应用,培养学生由特殊到一般的探究精神,培养学生对于事物规律的观察、发现能力,激发学生的学习兴趣.
二次根式的除法
【知识与技能】
1.理解(a≥0,b>0)和(a≥0,b>0),并运用它们进行计算.
2.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.
3.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.
【过程与方法】
1.先由具体数据,发现规律,导出 (a≥0,b>0),并用它进行计算.
2.再利用逆向思维,得出(a≥0,b>0),并运用它进行解题和化简.
3.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.
【情感态度】
通过探究(a≥0,b>0)培养学生由特殊到一般的探究精神;让学生推导(a≥0,b>0)以训练逆向思维,通过严谨解题,增强学生准确解题的能力.
【教学重点】
1.理解(a≥0,b>0),(a≥0,b>0)及利用它们进行计算和化简.
2.最简二次根式的运用.
【教学难点】
发现规律,归纳出二次根式的除法规定.最简二次根式的运用.
一、情境导入,初步认识
(学生活动)请同学们完成下列各题.
1.写出二次根式的乘法规定及逆向公式.
2.填空:
3.利用计算器计算填空:
【教学说明】每组推荐一名学生上台阐述运算结果,最后教师点评.
二、思考探究,获取新知
刚才同学们都练习得很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到:
一般地,对二次根式的除法规定:
(a≥0,b>0)
反过来, (a≥0,b>0)
下面我们利用这个规定来计算和化简一些题目.
例1 计算:
【教学说明】
直接利用(a≥0,b>0)
例2化简:
观察上面各小题的最后结果,发现这些二次根式有这些特点:
(1)被开方数中不含分母;
(2)被开方数中所含的因数(或因式)的幂的指数都小于2.
【教学说明】利用二次根式的乘法、除法规定来化简,要求最后结果化成最简二次根式.
三、运用新知,深化理解
1.化简:
3.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.
【教学说明】第1题可由学生自主完成,第2题、3题教师可给予相应的指导.
四、师生互动,课堂小结
请若干学生口述小结,老师再利用电子课件将小结放映在屏幕上.
1.布置作业:从教材“习题”中选取.
2.完成练习册中本课时练习的“课时作业”部分.
本课时教学突出学生主体性原则,即通过探究学习,指导学生独立思考,通过具体数据得出规律,再让学生相互交流,或上台展示自己的发现,或表述个人的体验,从中获取成功的体验后,激发学生探究的激情.
感谢您下载使用【班海】教学资源。班海——老师们都在免费用的数学作业精细批改微信小程序!
一键发布配套作业 & AI智能精细批改
(任务-发布任务-选择章节)