26.2实际问题与反比例函数
一、单选题
1.当温度不变时,气球内气体的气压(单位:)是气体体积(单位:)的函数,下表记录了一组实验数据:
(单位:) 1 1.5 2 2.5 3
(单位:) 96 64 48 38.4 32
与的函数关系可能是 ( )
A. B. C. D.
【答案】C
【分析】根据题意可得:,即可求解.
【详解】解:根据题意得:,即,
∴与的函数关系可能是.
故选:C
【点睛】本题考查了反比例函数的应用,解题的关键是能够观察表格并发现两个变量的乘积为常数96,难度不大.
2.为做好校园防疫工作,每日会对教室进行药物喷酒消毒,药物喷洒完成后,消毒药物在教室内空气中的浓度和时间满足关系(),已知测得当时,药物浓度,则的值为 ( )
A.50 B. C.5 D.15
【答案】A
【分析】把,代入即可.
【详解】解:∵当时,药物浓度,
∴代入得,
解得:
故选:A.
【点睛】本题主要考查反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.
3.如图1是一个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图2是该台灯的电流与电阻成反比例函数的图象,该图象经过点.根据图象可知,下列说法不正确的是 ( )
A.与的函数关系式是 B.当时,
C.当时, D.当时,的取值范围是
【答案】C
【分析】由待定系数法求出反比例函数的解析式,根据反比例函数的性质逐项分析即可得到答案.
【详解】解:设与的函数关系式为:,
该图像经过点,
,
,
与的函数关系式是,故选项A不符合题意;
当时,,解得,故选项B不符合题意;
,随的增大而减小,
当时,,故选项C符合题意;
当时,的取值范围是,故选项D不符合题意;
故选:C.
【点睛】本题主要考查了反比例函数的应用,由待定系数法求出反比例函数的解析式是解决问题的关键.
4.如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作(为 的整数)函数的图像为曲线,若曲线使得这些点分布在它的两侧,每侧各4个点,则的取值范围是 ( )
A. B. C. D.
【答案】A
【分析】根据题意写出点的坐标,再由曲线使得这些点分布在它的两侧,每侧各4个点,可得与在曲线两侧,即可得到答案.
【详解】解:由题意可得,
,,,,,,,,
若曲线过点,时,,
若曲线过点,时,,
若曲线过点,,时,,
若曲线过点,时,,
∵曲线使得这些点分布在它的两侧,每侧各4个点,
∴与在曲线两侧,
∴,
故选A.
【点睛】本题考查反比例函数的应用,求出个点坐标是本题的关键.
5.为做好疫情防控工作,学校对教室进行喷雾消毒,已知喷雾阶段教室内每立方米空气中含药量与时间成正比例,喷雾完成后y与x成反比例(如图所示).当每立方米空气中含药量低于时,对人体方能无毒害作用,则下列说法中正确的是 ( )
A.每立方米空气中含药量从上升到需要
B.每立方米空气中含药量下降过程中,y与x的函数关系式是
C.为了确保对人体无毒害作用,喷雾完成后学生才能进入教室
D.每立方米空气中含药量不低于的持续时间为
【答案】C
【分析】首先根据题意,喷雾阶段,室内每立方米空气中的含药量y与喷雾时间x成正比例;喷雾后,y与x成反比例,且其图象都过点将数据代入用待定系数法可求得在比例和反比例函数的函数解析式,再分别计算即可得出结果.
【详解】解:设喷雾阶段函数解析式为由题意得:
∴此阶段函数解析式为
设喷雾结束后函数解析式为由题意得:
∴此阶段函数解析式为
A.在喷雾阶段,当时,当时,共需要,故此选项不符合题意.
B.每立方米空气中含药量下降过程中,y与x的函数关系式是故此选项不符合题意.
C.喷雾结束后,当时,为了确保对人体无毒害作用,喷雾完成后学生才能进入教室,故此选项符合题意.
D.在喷雾阶段,当时,在喷雾结束后,当时,所以每立方米空气中含药量不低于的持续时间为故此选项不符合题意.
故选:C.
【点睛】本题主要考查了一次函数,反比例函数的应用,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.
6.当今,各种造型的气球深受小朋友喜爱.如图1是“冰墩墩”造型的气球,气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气球体积V(m3)的反比例函数,其图象如图2所示,当气球内的气压大于200kPa时,气球将爆炸,为了安全起见,气球的体积V的范围为*
A.V>0.48m3 B.V<0.48m3 C.V≥0.48m3 D.V≤0.48m3
【答案】C
【分析】先求出反比例函数解析式,再依题意得P≤200,即,解不等式即可.
【详解】设P与V的函数关系式为P=,
则,
解得k=96,
∴函数关系式为P=;
当P>200KPa时,气球将爆炸,
∴P≤200,即,
解得V≥0.48(m3).
故选C.
【点睛】本题考查了反比例函数的实际应用,关键是建立函数关系式,并会运用函数关系式解答题目的问题.
7.2021年新冠肺炎疫情防控形势依然严峻,严格按照防疫要求进行个人防护和环境消杀是防控的重点.已知某种环境消杀使用的消毒液中含有有效成分,每将个单位的溶解在一定量水中,则消毒液的浓度(克/升)随着时间(分钟)变化的函数关系式近似为,其中当时,,当时,.若多次溶解,则某一时刻水中的浓度为每次溶解的在相应时刻溶解的浓度之和.根据科学实验,当消毒液的浓度不低于4(克/升)时,它才能有效消毒.则下列结论不正确的是 ( )
A.一次投放4个单位的,在2分钟时,消毒液的浓度为克/升
B.一次投放4个单位的,有效消毒时间可达8分钟
C.若第一次投放2个单位的,6分钟后再投放2个单位的,第8分钟消毒液的浓度为5克/升
D.若第一次投放2个单位的,6分钟后再投放2个单位的,接下来的4分钟能够持续有效消毒
【答案】C
【分析】根据题意,对于题意根据当时,,当时,,当时,,当时,,根据题意求得时的函数值,即可判断A,令根据上述函数关系式,求得的取值范围,进而判断B选项,根据当时,求得函数关系式,求得当时的函数值即可判断C选项,根据C选项的解析式求得的最小值即可判断D选项.
【详解】对于A,由题意可得,当时,,
当时,,
当时,,
当时,,
当时,,故A正确,
对于B,当时,,解得,
故,
当时,,解得,
故,
综上所述,,
若一次投放4个单位的,消毒时间可达8分钟,故B正确,
对于C,当时,
,当时,,
故C错误,
对于D,∵,
∴,当且仅当,即时取等号,
∴有最小值,
∴接下来的4分钟能够持续消毒,故D正确.
故选C
【点睛】本题考查了正比例函数与反比例函数的应用,类比反比例函数求解是解题的关键.
8.两个反比例函数,在第一象限内的图像如图所示,点、、……反比例函数图像上,它们的横坐标分别是、、……,纵坐标分别是1,3,5,…,共2020个连续奇数,过点、、……分别作轴的平行线,与反比例函数的图像交点依次是、、……,则等于 ( )
A.2019.5 B.2020.5 C.2019 D.4039
【答案】A
【分析】主要是找规律,找出规律即可求出本题答案,先根据已知条件求出分别为1、3、5时的值,即可求出当时的值,再将其代入中即可求出.
【详解】解:当时,、、…分别为6、2、…
将、、…代入,
得:、、…
,
故选:A.
【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k≠0)的图象是双曲线;图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
9.如图,在轴正半轴上依次截取,过点、、、……分别作轴的垂线,与反比例函数交于点、、、…、,连接、、…,,过点、、…、分别向、、…、作垂线段,构成的一系列直角三角形(图中阴影部分)的面积和等于 ( ).
A. B. C. D.
【答案】B
【分析】由可设点的坐标为(1,),点的坐标为(1,),点的坐标为(1,)…点的坐标为(1,),把x=1,x=2,x=3代入反比例函数的解析式即可求出的值,再由三角形的面积公式可以得出…的值,即可得出答案.
【详解】∵
∴设(1,),(1,),(1,)…(1,)
∵、、、…、在反比例函数的图像上
∴
∴
∴
∵
∴
…
∴
因此答案选择B.
【点睛】本题考查的是反比例函数综合题,熟知反比例函数图像上各点的坐标一定适合此函数的解析式是解答此题的关键.
10.为规范市场秩序、保障民生工程,监管部门对某一商品的价格持续监控.该商品的价格(元/件)随时间t(天)的变化如图所示,设(元/件)表示从第1天到第t天该商品的平均价格,则随t变化的图像大致是 ( )
A. B.
C. D.
【答案】A
【分析】根据函数图像先求出关于t的函数解析式,进而求出关于t的解析式,再判断各个选项,即可.
【详解】解:∵由题意得:当1≤t≤6时,=2t+3,
当6<t≤25时,=15,
当25<t≤30时,=-2t+65,
∴当1≤t≤6时,=,
当6<t≤25时,=,
当25<t≤30时,=
= ,
∴当t=30时,=13,符合条件的选项只有A.
故选A.
【点睛】本题主要考查函数图像和函数解析式,掌握待定系数法以及函数图像上点的坐标意义,是解题的关键.
二、填空题
11.已知近视眼镜的度数y(度)与镜片焦距x(m)满足的关系式为y=,则当近视眼镜为200度时,镜片焦距为________.
【答案】0.5m
【分析】令y=200,代入反比例函数,求得x的值即可,
【详解】令y = 200,
即:200=
解得:x=0.5,
故200度近视眼镜镜片的焦距为0.5米.
故答案为:0.5m.
【点睛】本题考查了反比例函数的应用,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式,本题已经给出了解析式就使得难度大大降低.
12.如图,平面直角坐标系放置有两个三角板ABO和ACO,其中、为直角,,,和分别经过B、C两点,则的值为______.
【答案】
【分析】过点,分别做轴的垂线,交于点,,令长为,根据直角三角形的性质,勾股定理,得,,,的值,得到点,点的坐标;将点的坐标代入,点的坐代入标,求出,,即可.
【详解】如图,过点,分别做轴的垂线,交于点,,设长为
∴在,中,
∴,
∴
∴
∴在,中
,
∴;
∴;
∴,
∴,
∴
故答案为:.
【点睛】本题考查了反比例函数几何知识结合,解题的关键是掌握直角三角形的性质,勾股定理,反比例函数的性质.
13.科技小组为了验证某电路的电压、电流电阻三者之间的关系:,测得数据如表格:那么,当电阻时,电流___________A.
2 4 6 9
18 9 6 4
【答案】10
【分析】由表格数据求出反比例函数得解析式,再将代入即可求出答案即可.
【详解】解:把,代入得:,
解得,
∴,
当 代入得:
,
故答案为:10.
【点睛】本题考查了反比例函数的运用,灵活运用所学知识求解是解决本题的关键.
14.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体实验.测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x(时)之间的函数关系如图所示(当时,y与x成反比).则血液中药物浓度不低于4微克/毫升的持续时间为_________小时
【答案】
【分析】分别求出当和时y与x的表达式,再根据血液中药物浓度不低于4微克/毫升求出持续时间即可.
【详解】解:当时,函数为正比例函数,设:,
∵函数经过点,
∴,即,
∴当时,,
∴当药物浓度为4微克/毫升时,即时,
∴,
当时,函数为正比例函数,设:,
∵函数经过点,
∴,即,
∴当时,,
∴当药物浓度为4微克/毫升时,即时,
∴,
∴根据图象可以判断出:当时,血液中药物浓度不低于4微克/毫升,
∴持续时间为,
故答案为:.
【点睛】本题主要考查了一次函数和反比例函数的应用,根据图象求出一次函数和反比例函数的表达式是解答本题的关键.
15.如图所示的是一蓄水池每小时的排水量与排完水池中的水所用的时间之间的函数图象.
(1)根据图象可知此蓄水池的蓄水量为_______;
(2)此函数的解析式为___________;
(3)若要在内排完水池中的水,那么每小时的排水量至少应该是______;
(4)如果每小时的排水量是,那么水池中的水需要________h排完.
【答案】 48 8 9.6
【分析】(1)根据工作总量=工作效率×工作时间即可求出答案;
(2)根据点在此函数图象上,利用待定系数法求出函数的解析式;
(3)把代入函数的解析式即可求出每小时的排水量;
(4)把代入函数的解析式即可求出水池中的水需要排完的时间.
【详解】解:(1)根据题意得:蓄水量为,
故答案为:48;
(2)设,
点在此函数图象上,
,
,
此函数的解析式,
故答案为:;
(3)当时,;
每小时的排水量至少应该是.
故答案为:8;
(4)当时,;
∴水池中的水需要9.6h排完,
故答案为:9.6.
【点睛】主要考查了反比例函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式.
16.如图是4个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作(为1~4的整数),函数()的图象为曲线.若曲线使得,这些点分布在它的两侧,每侧各2个点,则的取值范围是______.
【答案】
【分析】根据每个台阶的高和宽分别是1和2,求得T1(8,1),T2(6,2),T3(4,3),T4(2,4),若L过点T1(8,1),T4(2,4),得到 k=8×1=8,若曲线L过点T2(6,2),T3(4,3)时,k=6×2=12,于是得到结论.
【详解】解:∵每个台阶的高和宽分别是1和2,
∴T1(8,1),T2(6,2),T3(4,3),T4(2,4),
∴若L过点T1(8,1),T4(2,4)时,k=8×1=8,
若曲线L过点T2(6,2),T3(4,3)时,k=6×2=12,
∵曲线L使得T1~T4这些点分布在它的两侧,每侧各2个点,
∴8<k<12,
故答案为:8<k<12.
【点睛】本题考查了反比例函数的应用,求出各点的坐标是本题的关键.
三、解答题
17.某种气球内充满了一定质量的气体,当温度不变时,气球内气体的压强与气球体积之间成反比例关系,其图象如图所示.
(1)求P与V之间的函数表达式;
(2)当时,求P的值;
(3)当气球内的气压大于时,气球将爆炸,为确保气球不爆炸,气球的体积应不小于多少?
【答案】(1)
(2)
(3)
【分析】(1)设出反比例函数的解析式,代入点A的坐标,即可解决;
(2)由题意可得,代入到解析式中即可求解;
(3)为了安全起见,,列出关于的不等式,解不等式,即可解决.
【详解】(1)设这个函数解析式为:,
代入点A的坐标得,,
,
这个函数的解析式为;
(2)由题可得,,
,
气球内气体的压强是9600帕;
(3)气球内气体的压强大于时,气球将爆炸,
为了安全起见,,
,
,
为了安全起见,气球的体积不少于0.6立方米.
【点睛】本题考查了反比例函数的应用,根据题意,利用待定系数法求出解析式是解决此题的突破口.
18.某果农今年试种了一种新品种的水果,5月份开始上市.根据其它相似产品的销售经验,若设该水果上市第天的销售单价为(元/千克),则与之间满足如下关系:
t 1 2 3 4 5 6 …
P(元/千克) 120 60 40 30 24 20 …
而该水果每天的销售量(千克)与之间满足的函数关系如下图所示:
(1)猜想销售单价P与t之间满足我们学过的哪种函数关系?并直接写出销售单价P与t之间的函数关系式(不必写出自变量取值范围);
(2)求每天的销售量s(千克)与t之间的函数关系式,并求上市第几天销售量最大,最大销售量是多少千克?
(3)当每天的销售收入低于600元时,该水果将失去生产销售的价值.该水果最只能上市销售几天?最低销售单价是多少元?(销售收入=销售单价P×销售量S)
(4)当每天的销售量不低于200千克时,这种水果的最低售价是多少元?
【答案】(1)反比例函数;;
(2),当上市15天时,销售量最大,最大销售量是225千克
(3)该水果最多只能上市销售25天,最低销售单价是4.8元
(4)6元
【分析】(1)根据可得销售单价P与t满足反比例函数,再变形即可得出解析式.
(2)设,代入,计算即可求出解析式,再配方后求出最大值即可;
(3)根据销售收入=销售单价P×销售量S列出函数解析式,再根据每天的销售收入低于600元列出不等式即可解题.
(4)根据“每天的销售量不低于200千克”求出的范围,再根据求出的最小值即可.
【详解】(1)P与t满足反比例函数关系.关系式为
(2)设,
根据题意得,解得,
∴.
∴当时,.
∴S与t的函数关系式为,当上市15天时,销售量最大,最大销售量是225千克.
(3)根据题意得,
即,∴.
∵P随t的增大而减小,∴(元).
∴该水果最多只能上市销售25天,最低销售单价是4.8元.
(4)当时,即.
解方程得,,
∴当时,.
∵P随t的增大而减小,
∴当,(元).
∴水果的最低售价是6元.
【点睛】本题主要考查了反比例函数与二次函数的综合应用,熟练掌握各函数的性质和图象特征,根据题意列出对应的函数或不等式是解题关键.
19.某电子科技公司研发出一套学习软件,并对这套学习软件在24周的销售时间内,做出了下面的预测:设第x周该软件的周销售量为T(单位:千套),当0<x≤8时,T与x+4成反比;当8<x≤24时.T﹣2与x成正比,并预测得到了如表中对应的数据.设第x周销售该软件每千套的利润为K(单位:千元),K与x满足如图中的函数关系图象:
x/周 8 24
T/千套 10 26
(1)求T与x的函数关系式;
(2)观察图象,当12≤x≤24时,K与x的函数关系式为________.
(3)设第x周销售该学习软件所获的周利润总额为y(单位:千元),则:
①在这24周的销售时间内,是否存在所获周利润总额不变的情况?若存在,求出这个不变的值;若不存在,请说明理由.
②该公司销售部门通过大数据模拟分析后认为,最有利于该学习软件提供售后服务和销售的周利润总额的范围是286≤y≤504,求在此范围内对应的周销售量T的最小值和最大值.
【答案】(1);
(2);
(3)①存在,不变的值为240;②当周利润总额的范围是286≤y≤504时,对应的周销售量T的最小值是11千套,最大值是18千套.
【详解】(1)解:当0<x≤8时,设,
根据表格中的数据,当x=8时,T=10,
∴,
解得:m=120,
∴,
当8<x≤24时,设,
根据表格中的数据,当x=24时,T=26,
∴,
解得:n=1,
∴,
即:,
∴T与x的函数关系式为;
(2)解:当12≤x≤24时,设K与x的函数关系式为,
将x=12,K=32;x=24,K=20代入,
得:,
解得:,
∴当12≤x≤24时,设K与x的函数关系式为,
故答案为:;
(3)①存在,不变的值为240,
由函数图像得:当0<x≤12时,设K与x的函数关系式为,
将x=0,K=8;x=12,K=32代入,
得:,
解得:,
∴当0<x≤12时,设K与x的函数关系式为K=2x+8,
∴当0<x≤8时,y=KT=(2x+8)·=240;
当8<x≤12时,y=KT=(2x+8)(x+2)=2x2+12x+16;
当12<x≤24时,y=KT=(-x+44)(x+2)=-x2+42x+88,
综上所述,在这24周的销售时间内,存在所获周利润总额不变的情况,这个不变的值为240.
②(Ⅰ)当8<x≤12时,y=2x2+12x+16=2(x+3)2-2,抛物线的对称轴为直线x=-3,
∴当8<x≤12时,在对称轴右侧,y随着x的增大而增大,
当2(x+3)2-2=286时,
解得:x1=9,x2=-15(舍去);
当x=12时,y取得最大值,最大值为2×(12+3)2-2=448,满足286≤y≤504;
当x=9时,周销售量T取得最小值11,当x=12时,T取得最大值14;
(Ⅱ)当12<x≤24时,y=-x2+42x+88=-(x-21)2+529,抛物线的对称轴为直线x=21,
当x=12时,y取得最小值,最小值为-(12-21)2+529=448,满足286≤y≤504;
当-(x-21)2+529=504时,
解得:x1=16,x2=26(舍去);
当x=12时,周销售量T取得最小值14,当x=16时,T取得最大值18,
综上所述,当周利润总额的范围是286≤y≤504时,对应的周销售量T的最小值是11千套,最大值是18千套.
【点睛】本题考查了待定系数法求函数关系式,二次函数图像的性质,一元二次方程的解法,熟练掌握二次函数图像的性质是解决本题的关键.26.2实际问题与反比例函数
一、单选题
1.当温度不变时,气球内气体的气压(单位:)是气体体积(单位:)的函数,下表记录了一组实验数据:
(单位:) 1 1.5 2 2.5 3
(单位:) 96 64 48 38.4 32
与的函数关系可能是 ( )
A. B. C. D.
2.为做好校园防疫工作,每日会对教室进行药物喷酒消毒,药物喷洒完成后,消毒药物在教室内空气中的浓度和时间满足关系(),已知测得当时,药物浓度,则的值为 ( )
A.50 B. C.5 D.15
3.如图1是一个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图2是该台灯的电流与电阻成反比例函数的图象,该图象经过点.根据图象可知,下列说法不正确的是 ( )
A.与的函数关系式是 B.当时,
C.当时, D.当时,的取值范围是
4.如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作(为 的整数)函数的图像为曲线,若曲线使得这些点分布在它的两侧,每侧各4个点,则的取值范围是 ( )
A. B. C. D.
5.为做好疫情防控工作,学校对教室进行喷雾消毒,已知喷雾阶段教室内每立方米空气中含药量与时间成正比例,喷雾完成后y与x成反比例(如图所示).当每立方米空气中含药量低于时,对人体方能无毒害作用,则下列说法中正确的是 ( )
A.每立方米空气中含药量从上升到需要
B.每立方米空气中含药量下降过程中,y与x的函数关系式是
C.为了确保对人体无毒害作用,喷雾完成后学生才能进入教室
D.每立方米空气中含药量不低于的持续时间为
6.当今,各种造型的气球深受小朋友喜爱.如图1是“冰墩墩”造型的气球,气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气球体积V(m3)的反比例函数,其图象如图2所示,当气球内的气压大于200kPa时,气球将爆炸,为了安全起见,气球的体积V的范围为*
A.V>0.48m3 B.V<0.48m3 C.V≥0.48m3 D.V≤0.48m3
7.2021年新冠肺炎疫情防控形势依然严峻,严格按照防疫要求进行个人防护和环境消杀是防控的重点.已知某种环境消杀使用的消毒液中含有有效成分,每将个单位的溶解在一定量水中,则消毒液的浓度(克/升)随着时间(分钟)变化的函数关系式近似为,其中当时,,当时,.若多次溶解,则某一时刻水中的浓度为每次溶解的在相应时刻溶解的浓度之和.根据科学实验,当消毒液的浓度不低于4(克/升)时,它才能有效消毒.则下列结论不正确的是 ( )
A.一次投放4个单位的,在2分钟时,消毒液的浓度为克/升
B.一次投放4个单位的,有效消毒时间可达8分钟
C.若第一次投放2个单位的,6分钟后再投放2个单位的,第8分钟消毒液的浓度为5克/升
D.若第一次投放2个单位的,6分钟后再投放2个单位的,接下来的4分钟能够持续有效消毒
8.两个反比例函数,在第一象限内的图像如图所示,点、、……反比例函数图像上,它们的横坐标分别是、、……,纵坐标分别是1,3,5,…,共2020个连续奇数,过点、、……分别作轴的平行线,与反比例函数的图像交点依次是、、……,则等于 ( )
A.2019.5 B.2020.5 C.2019 D.4039
9.如图,在轴正半轴上依次截取,过点、、、……分别作轴的垂线,与反比例函数交于点、、、…、,连接、、…,,过点、、…、分别向、、…、作垂线段,构成的一系列直角三角形(图中阴影部分)的面积和等于 ( ).
A. B. C. D.
10.为规范市场秩序、保障民生工程,监管部门对某一商品的价格持续监控.该商品的价格(元/件)随时间t(天)的变化如图所示,设(元/件)表示从第1天到第t天该商品的平均价格,则随t变化的图像大致是 ( )
A. B.
C. D.
二、填空题
11.已知近视眼镜的度数y(度)与镜片焦距x(m)满足的关系式为y=,则当近视眼镜为200度时,镜片焦距为________.
12.如图,平面直角坐标系放置有两个三角板ABO和ACO,其中、为直角,,,和分别经过B、C两点,则的值为______.
13.科技小组为了验证某电路的电压、电流电阻三者之间的关系:,测得数据如表格:那么,当电阻时,电流___________A.
2 4 6 9
18 9 6 4
14.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体实验.测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x(时)之间的函数关系如图所示(当时,y与x成反比).则血液中药物浓度不低于4微克/毫升的持续时间为_________小时
15.如图所示的是一蓄水池每小时的排水量与排完水池中的水所用的时间之间的函数图象.
(1)根据图象可知此蓄水池的蓄水量为_______;
(2)此函数的解析式为___________;
(3)若要在内排完水池中的水,那么每小时的排水量至少应该是______;
(4)如果每小时的排水量是,那么水池中的水需要________h排完.
16.如图是4个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作(为1~4的整数),函数()的图象为曲线.若曲线使得,这些点分布在它的两侧,每侧各2个点,则的取值范围是______.
三、解答题
17.某种气球内充满了一定质量的气体,当温度不变时,气球内气体的压强与气球体积之间成反比例关系,其图象如图所示.
(1)求P与V之间的函数表达式;
(2)当时,求P的值;
(3)当气球内的气压大于时,气球将爆炸,为确保气球不爆炸,气球的体积应不小于多少?
18.某果农今年试种了一种新品种的水果,5月份开始上市.根据其它相似产品的销售经验,若设该水果上市第天的销售单价为(元/千克),则与之间满足如下关系:
t 1 2 3 4 5 6 …
P(元/千克) 120 60 40 30 24 20 …
而该水果每天的销售量(千克)与之间满足的函数关系如下图所示:
(1)猜想销售单价P与t之间满足我们学过的哪种函数关系?并直接写出销售单价P与t之间的函数关系式(不必写出自变量取值范围);
(2)求每天的销售量s(千克)与t之间的函数关系式,并求上市第几天销售量最大,最大销售量是多少千克?
(3)当每天的销售收入低于600元时,该水果将失去生产销售的价值.该水果最只能上市销售几天?最低销售单价是多少元?(销售收入=销售单价P×销售量S)
(4)当每天的销售量不低于200千克时,这种水果的最低售价是多少元?
19.某电子科技公司研发出一套学习软件,并对这套学习软件在24周的销售时间内,做出了下面的预测:设第x周该软件的周销售量为T(单位:千套),当0<x≤8时,T与x+4成反比;当8<x≤24时.T﹣2与x成正比,并预测得到了如表中对应的数据.设第x周销售该软件每千套的利润为K(单位:千元),K与x满足如图中的函数关系图象:
x/周 8 24
T/千套 10 26
(1)求T与x的函数关系式;
(2)观察图象,当12≤x≤24时,K与x的函数关系式为________.
(3)设第x周销售该学习软件所获的周利润总额为y(单位:千元),则:
①在这24周的销售时间内,是否存在所获周利润总额不变的情况?若存在,求出这个不变的值;若不存在,请说明理由.
②该公司销售部门通过大数据模拟分析后认为,最有利于该学习软件提供售后服务和销售的周利润总额的范围是286≤y≤504,求在此范围内对应的周销售量T的最小值和最大值.
试卷第4页,共7页
试卷第3页,共7页
【参考答案及解析】
1.C
【分析】根据题意可得:,即可求解.
【详解】解:根据题意得:,即,
∴与的函数关系可能是.
故选:C
【点睛】本题考查了反比例函数的应用,解题的关键是能够观察表格并发现两个变量的乘积为常数96,难度不大.
2.A
【分析】把,代入即可.
【详解】解:∵当时,药物浓度,
∴代入得,
解得:
故选:A.
【点睛】本题主要考查反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.
3.C
【分析】由待定系数法求出反比例函数的解析式,根据反比例函数的性质逐项分析即可得到答案.
【详解】解:设与的函数关系式为:,
该图像经过点,
,
,
与的函数关系式是,故选项A不符合题意;
当时,,解得,故选项B不符合题意;
,随的增大而减小,
当时,,故选项C符合题意;
当时,的取值范围是,故选项D不符合题意;
故选:C.
【点睛】本题主要考查了反比例函数的应用,由待定系数法求出反比例函数的解析式是解决问题的关键.
4.A
【分析】根据题意写出点的坐标,再由曲线使得这些点分布在它的两侧,每侧各4个点,可得与在曲线两侧,即可得到答案.
【详解】解:由题意可得,
,,,,,,,,
若曲线过点,时,,
若曲线过点,时,,
若曲线过点,,时,,
若曲线过点,时,,
∵曲线使得这些点分布在它的两侧,每侧各4个点,
∴与在曲线两侧,
∴,
故选A.
【点睛】本题考查反比例函数的应用,求出个点坐标是本题的关键.
5.C
【分析】首先根据题意,喷雾阶段,室内每立方米空气中的含药量y与喷雾时间x成正比例;喷雾后,y与x成反比例,且其图象都过点将数据代入用待定系数法可求得在比例和反比例函数的函数解析式,再分别计算即可得出结果.
【详解】解:设喷雾阶段函数解析式为由题意得:
∴此阶段函数解析式为
设喷雾结束后函数解析式为由题意得:
∴此阶段函数解析式为
A.在喷雾阶段,当时,当时,共需要,故此选项不符合题意.
B.每立方米空气中含药量下降过程中,y与x的函数关系式是故此选项不符合题意.
C.喷雾结束后,当时,为了确保对人体无毒害作用,喷雾完成后学生才能进入教室,故此选项符合题意.
D.在喷雾阶段,当时,在喷雾结束后,当时,所以每立方米空气中含药量不低于的持续时间为故此选项不符合题意.
故选:C.
【点睛】本题主要考查了一次函数,反比例函数的应用,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.
6.C
【分析】先求出反比例函数解析式,再依题意得P≤200,即,解不等式即可.
【详解】设P与V的函数关系式为P=,
则,
解得k=96,
∴函数关系式为P=;
当P>200KPa时,气球将爆炸,
∴P≤200,即,
解得V≥0.48(m3).
故选C.
【点睛】本题考查了反比例函数的实际应用,关键是建立函数关系式,并会运用函数关系式解答题目的问题.
7.C
【分析】根据题意,对于题意根据当时,,当时,,当时,,当时,,根据题意求得时的函数值,即可判断A,令根据上述函数关系式,求得的取值范围,进而判断B选项,根据当时,求得函数关系式,求得当时的函数值即可判断C选项,根据C选项的解析式求得的最小值即可判断D选项.
【详解】对于A,由题意可得,当时,,
当时,,
当时,,
当时,,
当时,,故A正确,
对于B,当时,,解得,
故,
当时,,解得,
故,
综上所述,,
若一次投放4个单位的,消毒时间可达8分钟,故B正确,
对于C,当时,
,当时,,
故C错误,
对于D,∵,
∴,当且仅当,即时取等号,
∴有最小值,
∴接下来的4分钟能够持续消毒,故D正确.
故选C
【点睛】本题考查了正比例函数与反比例函数的应用,类比反比例函数求解是解题的关键.
8.A
【分析】主要是找规律,找出规律即可求出本题答案,先根据已知条件求出分别为1、3、5时的值,即可求出当时的值,再将其代入中即可求出.
【详解】解:当时,、、…分别为6、2、…
将、、…代入,
得:、、…
,
故选:A.
【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k≠0)的图象是双曲线;图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
9.B
【分析】由可设点的坐标为(1,),点的坐标为(1,),点的坐标为(1,)…点的坐标为(1,),把x=1,x=2,x=3代入反比例函数的解析式即可求出的值,再由三角形的面积公式可以得出…的值,即可得出答案.
【详解】∵
∴设(1,),(1,),(1,)…(1,)
∵、、、…、在反比例函数的图像上
∴
∴
∴
∵
∴
…
∴
因此答案选择B.
【点睛】本题考查的是反比例函数综合题,熟知反比例函数图像上各点的坐标一定适合此函数的解析式是解答此题的关键.
10.A
【分析】根据函数图像先求出关于t的函数解析式,进而求出关于t的解析式,再判断各个选项,即可.
【详解】解:∵由题意得:当1≤t≤6时,=2t+3,
当6<t≤25时,=15,
当25<t≤30时,=-2t+65,
∴当1≤t≤6时,=,
当6<t≤25时,=,
当25<t≤30时,=
= ,
∴当t=30时,=13,符合条件的选项只有A.
故选A.
【点睛】本题主要考查函数图像和函数解析式,掌握待定系数法以及函数图像上点的坐标意义,是解题的关键.
11.0.5m
【分析】令y=200,代入反比例函数,求得x的值即可,
【详解】令y = 200,
即:200=
解得:x=0.5,
故200度近视眼镜镜片的焦距为0.5米.
故答案为:0.5m.
【点睛】本题考查了反比例函数的应用,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式,本题已经给出了解析式就使得难度大大降低.
12.
【分析】过点,分别做轴的垂线,交于点,,令长为,根据直角三角形的性质,勾股定理,得,,,的值,得到点,点的坐标;将点的坐标代入,点的坐代入标,求出,,即可.
【详解】如图,过点,分别做轴的垂线,交于点,,设长为
∴在,中,
∴,
∴
∴
∴在,中
,
∴;
∴;
∴,
∴,
∴
故答案为:.
【点睛】本题考查了反比例函数几何知识结合,解题的关键是掌握直角三角形的性质,勾股定理,反比例函数的性质.
13.10
【分析】由表格数据求出反比例函数得解析式,再将代入即可求出答案即可.
【详解】解:把,代入得:,
解得,
∴,
当 代入得:
,
故答案为:10.
【点睛】本题考查了反比例函数的运用,灵活运用所学知识求解是解决本题的关键.
14.
【分析】分别求出当和时y与x的表达式,再根据血液中药物浓度不低于4微克/毫升求出持续时间即可.
【详解】解:当时,函数为正比例函数,设:,
∵函数经过点,
∴,即,
∴当时,,
∴当药物浓度为4微克/毫升时,即时,
∴,
当时,函数为正比例函数,设:,
∵函数经过点,
∴,即,
∴当时,,
∴当药物浓度为4微克/毫升时,即时,
∴,
∴根据图象可以判断出:当时,血液中药物浓度不低于4微克/毫升,
∴持续时间为,
故答案为:.
【点睛】本题主要考查了一次函数和反比例函数的应用,根据图象求出一次函数和反比例函数的表达式是解答本题的关键.
15. 48 8 9.6
【分析】(1)根据工作总量=工作效率×工作时间即可求出答案;
(2)根据点在此函数图象上,利用待定系数法求出函数的解析式;
(3)把代入函数的解析式即可求出每小时的排水量;
(4)把代入函数的解析式即可求出水池中的水需要排完的时间.
【详解】解:(1)根据题意得:蓄水量为,
故答案为:48;
(2)设,
点在此函数图象上,
,
,
此函数的解析式,
故答案为:;
(3)当时,;
每小时的排水量至少应该是.
故答案为:8;
(4)当时,;
∴水池中的水需要9.6h排完,
故答案为:9.6.
【点睛】主要考查了反比例函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式.
16.
【分析】根据每个台阶的高和宽分别是1和2,求得T1(8,1),T2(6,2),T3(4,3),T4(2,4),若L过点T1(8,1),T4(2,4),得到 k=8×1=8,若曲线L过点T2(6,2),T3(4,3)时,k=6×2=12,于是得到结论.
【详解】解:∵每个台阶的高和宽分别是1和2,
∴T1(8,1),T2(6,2),T3(4,3),T4(2,4),
∴若L过点T1(8,1),T4(2,4)时,k=8×1=8,
若曲线L过点T2(6,2),T3(4,3)时,k=6×2=12,
∵曲线L使得T1~T4这些点分布在它的两侧,每侧各2个点,
∴8<k<12,
故答案为:8<k<12.
【点睛】本题考查了反比例函数的应用,求出各点的坐标是本题的关键.
17.(1)
(2)
(3)
【分析】(1)设出反比例函数的解析式,代入点A的坐标,即可解决;
(2)由题意可得,代入到解析式中即可求解;
(3)为了安全起见,,列出关于的不等式,解不等式,即可解决.
【详解】(1)设这个函数解析式为:,
代入点A的坐标得,,
,
这个函数的解析式为;
(2)由题可得,,
,
气球内气体的压强是9600帕;
(3)气球内气体的压强大于时,气球将爆炸,
为了安全起见,,
,
,
为了安全起见,气球的体积不少于0.6立方米.
【点睛】本题考查了反比例函数的应用,根据题意,利用待定系数法求出解析式是解决此题的突破口.
18.(1)反比例函数;;
(2),当上市15天时,销售量最大,最大销售量是225千克
(3)该水果最多只能上市销售25天,最低销售单价是4.8元
(4)6元
【分析】(1)根据可得销售单价P与t满足反比例函数,再变形即可得出解析式.
(2)设,代入,计算即可求出解析式,再配方后求出最大值即可;
(3)根据销售收入=销售单价P×销售量S列出函数解析式,再根据每天的销售收入低于600元列出不等式即可解题.
(4)根据“每天的销售量不低于200千克”求出的范围,再根据求出的最小值即可.
【详解】(1)P与t满足反比例函数关系.关系式为
(2)设,
根据题意得,解得,
∴.
∴当时,.
∴S与t的函数关系式为,当上市15天时,销售量最大,最大销售量是225千克.
(3)根据题意得,
即,∴.
∵P随t的增大而减小,∴(元).
∴该水果最多只能上市销售25天,最低销售单价是4.8元.
(4)当时,即.
解方程得,,
∴当时,.
∵P随t的增大而减小,
∴当,(元).
∴水果的最低售价是6元.
【点睛】本题主要考查了反比例函数与二次函数的综合应用,熟练掌握各函数的性质和图象特征,根据题意列出对应的函数或不等式是解题关键.
19.(1);
(2);
(3)①存在,不变的值为240;②当周利润总额的范围是286≤y≤504时,对应的周销售量T的最小值是11千套,最大值是18千套.
【详解】(1)解:当0<x≤8时,设,
根据表格中的数据,当x=8时,T=10,
∴,
解得:m=120,
∴,
当8<x≤24时,设,
根据表格中的数据,当x=24时,T=26,
∴,
解得:n=1,
∴,
即:,
∴T与x的函数关系式为;
(2)解:当12≤x≤24时,设K与x的函数关系式为,
将x=12,K=32;x=24,K=20代入,
得:,
解得:,
∴当12≤x≤24时,设K与x的函数关系式为,
故答案为:;
(3)①存在,不变的值为240,
由函数图像得:当0<x≤12时,设K与x的函数关系式为,
将x=0,K=8;x=12,K=32代入,
得:,
解得:,
∴当0<x≤12时,设K与x的函数关系式为K=2x+8,
∴当0<x≤8时,y=KT=(2x+8)·=240;
当8<x≤12时,y=KT=(2x+8)(x+2)=2x2+12x+16;
当12<x≤24时,y=KT=(-x+44)(x+2)=-x2+42x+88,
综上所述,在这24周的销售时间内,存在所获周利润总额不变的情况,这个不变的值为240.
②(Ⅰ)当8<x≤12时,y=2x2+12x+16=2(x+3)2-2,抛物线的对称轴为直线x=-3,
∴当8<x≤12时,在对称轴右侧,y随着x的增大而增大,
当2(x+3)2-2=286时,
解得:x1=9,x2=-15(舍去);
当x=12时,y取得最大值,最大值为2×(12+3)2-2=448,满足286≤y≤504;
当x=9时,周销售量T取得最小值11,当x=12时,T取得最大值14;
(Ⅱ)当12<x≤24时,y=-x2+42x+88=-(x-21)2+529,抛物线的对称轴为直线x=21,
当x=12时,y取得最小值,最小值为-(12-21)2+529=448,满足286≤y≤504;
当-(x-21)2+529=504时,
解得:x1=16,x2=26(舍去);
当x=12时,周销售量T取得最小值14,当x=16时,T取得最大值18,
综上所述,当周利润总额的范围是286≤y≤504时,对应的周销售量T的最小值是11千套,最大值是18千套.
【点睛】本题考查了待定系数法求函数关系式,二次函数图像的性质,一元二次方程的解法,熟练掌握二次函数图像的性质是解决本题的关键.