参考答案
第五章相交线与平行线
是连接直线外一点与直线上各点的所有线段中,垂线段最
5.1相交线
短.19.解:(1)因为OA⊥OB,所以∠AOC+∠BOC=90.
因为∠BOC=50°,所以∠AOC=40°.因为OC⊥OD,所以
5.1.1相交线
∠COD=90°.所以∠AOD=∠COD+∠AOC=90°+40°=
1.C2.D3.D4.∠3∠3,∠15.D6.A7.A
130°.(2)因为OA⊥OB,OC⊥OD,所以∠AOB=∠COD=
8.∠1=∠2对顶角相等9.解::OA平分∠EOC,
90°.因为∠AOB+∠BOC+∠COD+∠AOD=360°,所以
.∠EC=2∠AC.:∠AOC=∠BD=30°,∴∠EC=2X
∠BOC+∠AOD=180°.因为∠BOC=60°,所以∠AOD=
30=60°.10.解::∠B0F=∠2=60°,.∠BOC=∠1+
120°.(3)∠AOD十∠BOC=180°.理由:由图①可知,
∠BOF=15°+60°=75°.11.解:(1)∠AOC的邻补角是
∠BOC=90°-∠AOC,∠AOD=90°+∠AOC,所以
∠AOD和∠BOC:对顶角是∠DOB.(2)因为∠BOE与
∠AOD+∠B0C=90°+∠AOC+90°-∠AOC=180°.
∠AOF互为对顶角,所以∠BOE=∠AOF=75°,因为
(4)由(3)中结论可知,∠AOD+∠BOC=180°.因为
∠BOF与∠AOF是邻补角,所以∠BOF=180°-∠AOF=
180°-75°=105°.12.B13.B14.B15.A16.60
∠B0C:∠A0D=7:29,所以∠B0C=元×180=35.
120°17.①18.140°19.解:因为OE平分∠B0D,所以
∠A0D=180°-35°=145°.
∠1=∠2.因为∠3:∠2=8:1,所以8∠2+2∠2=180°,即
5.1.3同位角、内错角、同旁内角
∠2=18°.所以∠A0C=∠BOD=2×18°=36.
1.A2.B3.D4.D5.B6.C7.80°80°100
20.解:(1)由邻补角的定义,得∠AOD=180°-∠AOC=
8.B9.∠2∠3邻补角对顶角∠1
180°-60°=120°.由对顶角相等,得∠BOD=∠AOC=60°.
∠110.解:(1)如图.(2):∠1=3∠2,
因为OE平分∠AOD,OF平分∠BOD,所以∠DOE=
∠2=3∠3,∠1=9∠3.又:∠1+∠3=过
合∠A0D=60,∠D0F=2∠BOD=30.所以∠EOF=
180°,.∠3=18.∠1=162°,∠2=54°.11.解:(1)∠2
与∠B是同旁内角,∠2十∠B=180°.理由如下:因为∠1
∠DOF+∠DOE=90°.(2)∠EOF的度数不发生变化.
=∠B,∠1+∠2=180°,所以∠2+∠B=180°.(2)∠3
理由如下:因为OE平分∠AOD,OF平分∠BOD,所以
与∠C是同位角,∠3=∠C.理由如下:因为∠4+∠C=
∠DOE=合∠AOD.∠DOF=合∠BOD.因为∠BOD+
180°,∠4+∠3=180°,所以∠3=∠C(同角的补角相等).
∠AOD=180°,所以∠EOF=∠DOF+∠DOE=
2∠BOD+
专题训练(一)相交线中的角度计算
1.解::∠AOB=180°,而OE平分∠AOB,.∠AOE=
∠A0D)=90°.21,(1)24(2)612(3)1224
(4)n(n-1)2n(n一1)
∠BOE=号∠AOB=90,:∠DOE=50,∠B0D
5.1.2垂线
∠BOE-∠DOE=90°-50°=40°,,'OB平分∠DOF,
1.C2.C3.105°4.∠1+∠2=90°5.20°
.∠DOF=2∠BOD=2X40°=80°.2.解:设∠AOC=
6.解:AB⊥CD,∠DOB=90°.又:∠DOE=127°,
4.x,则∠AOD=5.x.:∠AOC+∠AOD=180°,.4x+
.∠BOE=∠DOE-∠DOB=127°-90°=37°..∠AOF=
5.x=180°,解得x=20°..∠A0C=4x=80°,.∠B0D=
∠BOE=37°.7.B8.C9.B垂线段最短10.D
∠AOC=80.:OELAB,∴∠EOE=90°..∠DOE=∠BOE-
11.B12.6cm8cm4.8cm13.B14.157.5
∠B0D=10.又:0F平分∠0B∠D0F=2∠0D=40.
15.60或12016.解:1因为∠A0C=号∠B0C∠A0C+
.∠EOF=∠EOD+∠DOF=10°+40°=50°.
∠BOC=180°,所以∠AOC+3∠AOC=180°.所以∠AOC=
3.(1)∠BOD∠AOE(2)解:∠DOB=∠AOC=70°,
45.(2)OD⊥AB,理由如下:因为OC平分∠AOD,
∠DOB=∠BOE+∠EOD,∠BOE:∠EOD=2:3,
∠AOC=45°,所以∠AOD=90°.所以OD⊥AB.
17.解:OE,OF分别平分∠AOC和∠BOC,∴∠EOC=
∴∠EOD=∠BOE.∠B0E+号∠B0E=7O,
号∠A0C.∠POC=号∠B0C.:∠A0C和∠B0C互为
∴.∠B0E=28°..∠AOE=180°-∠B0E=152.
4.解:(1)OF⊥OD.理由:因为OF平分∠AOE,所以∠AOF=
邻补角,.∠AOC+∠BOC=180°.∴.∠EOF=∠EOC+
∠BOF=号∠A0E又因为∠DOE=∠BOD,所以∠D0E-
∠FOC=∠A0C+7∠B0C=(∠A0C+∠B0C)
∠BOD=
∠BOE,所以∠DOE+∠EOF=(∠BOE十
2×180°=90°.∴0E10F.
18.解:(1)如图所示,连接AD,BC相
i.4
∠A0D=×180=90,即∠P0D=90.所以0FL0D
交于点H,则点H为所求蓄水池的位
(2)设∠AOC=x°,因为∠AOC:∠AOD=1:5,所以
置.(2)过点H作HR⊥EF于点R,5用
∠AOD=5.x°.因为∠AOC+∠AOD=180°,所以x+5.x=
沿HR挖渠,可使开的渠道最短,依据
通
180,x=30.所以∠DOE=∠BOD=∠AOC=30°.又因为
139·班级:
姓名:
5.3.2
命题、定理、证明
知识要点全练
夯实
规律方法全练
批升能力
知识点1命题
8.下列命题可作为定理的有
(
1.下列语句中,是命题的是
()
①两直线平行,同位角相等;②垂线段最短;
①若∠1=60°,∠2=60°,则∠1=∠2;②同位
③相等的角是对顶角;④同角的余角相等;
角相等吗?③画线段AB=CD:④如果a>b,
⑤内错角相等;⑥两点确定一条直线.
b>c,那么a>c;⑤直角都相等.
A.4个B.3个C.2个D.1个
A.①④⑤
B.①②④
9.下列说法:①若ab>0,则a>0且b>0:②若
C.①②⑤
D.②③④⑤
|a-b=b-a,则b>a;③若x=y,则x2=y2;
2.把命题“对顶角相等”改写成“如果…那
④若x=一1或3,则x2-2x-3=0;⑤在同一
么…”的形式是
平面内,若直线a⊥b,b⊥c,则a⊥c.其中是真
命题的有
(填序号).
3.命题“两直线平行,内错角相等”的题设是
10.如图,AB∥CD,∠1=∠2,∠3=∠4.求证:
,结论是
EG∥FH.
知识点2真命题与假命题
4.下列命题中,是真命题的是
A.整数和分数统称为有理数
B.相反数等于它本身的数是0和1
C.同位角相等
D.同旁内角互补
5.下列命题中,是假命题的是
A.两直线平行,同位角相等
探究创新全练
挑战自我
B.两点之间,直线最短
LOOCOOOCOOOCOOCOOCCX0000
C.对顶角相等
11,如图,已知BC,DE相交于点O,给出以下三
D.内错角相等,两直线平行
个判断:①AB∥DE;②BC∥EF:③∠B=
知识点3定理与证明
∠E,请你以其中两个判断作为题设,另外一
6.下列说法错误的是
(
个判断作为结论,写出所有的命题,指出这些
A.命题不一定是定理,定理一定是命题
命题是真命题还是假命题,并选择其中的一
B.定理不可能是假命题
个真命题加以证明.
C.真命题是定理
D.如果真命题的正确性是经过推理证实的,
那么这样得到的真命题就是定理
7.如图,OP平分∠MON,点A,B分别在OP,
OM上,∠AOB=∠BAO.求证:AB∥ON,
B
017