班海数学精批——一本可精细批改的教辅
一元一次不等式组及其解法
〖教学目标〗
1、理解一元一次不等式组的概念.
2、理解不等式组的解的概念.
3、会解由两个一元一次不等式组成的不等式组,并会用数轴确定解.
4、培养学生类比推理能力.
〖教学重点与难点〗
教学重点:一元一次不等式组的解法.
教学难点:例2较为复杂,几乎包括了解一元一次不等式的全部步骤,是本节教学的难点,用数轴表示一元一次不等式组的解也是难点。
〖教学过程〗
一.引入
1.想一想:某单位从超市购买了墨水笔和圆珠笔共15桶,所付金额超过570元,但不到580元。已知这两种笔每桶的单价为圆珠笔34.90元/支,墨水笔44.90元/支。设购买圆珠笔X桶,你能列出几个不等式?
2.学生活动:找出已知条件,列出所有不等关系式,互相讨论,类推概念,鼓励学生通过观察,分析,补充解决问题。
3.最后教师总结两个不等式。
如设购买圆珠笔的桶数为X,则 :
二.新课
1.一元一次不等式组:一般地,由几个同一个未知数的一元一次不等式所组成的一组不等式,叫做一元一次不等式组。像上面就是一元一次不等式组,再
例如:
都是一元一次不等式组.
2. 不等式组解的概念:组成不等式组的各个不等式的解的公共部分就是不等式组的解.当它们没有公共部分时.我们称这个不等式组无解.
3.做一做:
例1.解一元一次不等式组
解:解不等式①, 得: X>-1
解不等式②, 得: X≤6
把 ① ②两个不等式的解表示在数轴上,如下图:
-1 0 6
所以原不等式组的解是-1
4.应用拓展:解由两个一元一次不等式组成的不等式组,在取各个不等式的解公共部分时,有几种不同情况吗
若a用数轴试一试.
(1) (2)
(3) (4) (设a一般由两个一元一次不等式组成的不等式组由四种基本类型确定,它们的解集、数轴表示如下表
一元一次不等式组 解集 图示 口诀
x>ax>b x>b 大大取大
xx>axxb 无解 比小小,比大大,解不了(无解)
5.尝试反馈:试一试,利用数轴分别求出满足下列各组不等式组的x值的公共部分:
(1) (2)
(3) (4)
6.探索较复杂的不等式组的解法:
例2. 解一元一次不等式组
解:由不等式①,去扩号得 3-5X>X-4X+2
移项,整理得 -2X>-1
所以X<
解不等式②,去分母得 3X-2>10-2X
移项,整理得 5X>12
所以X>
把①,②两个不等式的解表示在数轴上.
0 1 2
所以原不等式组无解.
7.通过范例,帮助学生总结解一元一次不等式组的步骤:
(1)依次解各个一元一次不等式.
(2)把各个一元一次不等式的解分别表示在同一数轴上.
(3)根据解在数轴上的表示确定不等式组的解.
三.巩固 (学生活动,与同伴交流自己的问题和解决问题的过程)
1. 解下列一元一次不等式组:
(1) (2) 2. 分别求出本节开头问题中购买墨水笔和圆珠笔的桶数
四.归纳
1.学生谈本节课的收获:优等生谈学到什么知识,上进生谈体会;
2.教师小结:这节课主要学习了一元一次不等式组及不等式组的解的有关概念,要求会解有两个一元一次不等式组成的一元一次不等式组,并会用数轴确定解集;也可以利用口诀“大大取大,小小取小,比小大比大小取中间,比大大比小小无解”来求不等式组的解。
五.布置作业
感谢您下载使用【班海】教学资源。班海——老师们都在免费用的数学作业精细批改微信小程序!
一键发布配套作业 & AI智能精细批改
(任务-发布任务-选择章节)