【班海精品】冀教版(新)八下-22.6 正方形【优质教案】

文档属性

名称 【班海精品】冀教版(新)八下-22.6 正方形【优质教案】
格式 doc
文件大小 179.5KB
资源类型 试卷
版本资源 冀教版
科目 数学
更新时间 2023-01-13 10:18:57

图片预览

文档简介

班海数学精批——一本可精细批改的教辅
正方形及其性质
课题 课型 新授 案序 第1课时
教学目标 知识技能 1.掌握正方形的概念、性质,并会用它们进行有关的论证和计算.2.理解正方形与平行四边形、矩形、菱形的联系和区别
数学思考 通过观察、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力.
解决问题 经历探索正方形有关性质的过程.在观察中寻求新知,在探索中发展推理能力,逐步掌握说理的基本方法.
情感态度 通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力.
教学重点 正方形的定义及正方形与平行四边形、矩形、菱形的联系.
教学难点 正方形与矩形、菱形的关系及正方形性质灵活运用.
教 学 过 程
教学步骤 师生活动 设计意图
活动一:创设情境导入新课 第一步:课堂引入1.做一做:用一张长方形的纸片(如图所示)折出一个正方形.学生在动手中对正方形产生感性认识,并感知正方形与矩形的关系.问题:什么样的四边形是正方形?正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.其定义包括了两层意: ⑴有一组邻边相等的平行四边形 (菱形)⑵有一个角是直角的平行四边形 (矩形)2.【问题】正方形有什么性质?由正方形的定义可以得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形.所以,正方形具有矩形的性质,同时又具有菱形的性质.归纳、总结正方形的性质: 因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形,所以它具有这些图形性质的综合,引导学生从角、边、对角线上归纳总结.正方形性质1:正方形的四个角都是直角,四条边都相等.正方形性质2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角. 从学生的生活实际出发,创设情境,提出问题,激发学生强烈的好奇心和求知欲.学生经历了将实际问题抽象为数学问题的建模过程.通过分析让学生感受到正方形与矩形和菱形、平行四边形的紧密联系;同时,把思维兴奋点集中到要研究的正方形上来,为下面学习新知识创造了良好开端.
活动二:实践探究交流新知 第二步:应用举例:例1 求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形. 已知:如图,正方形ABCD中,对角线的交点为O,E是OB上的一点,DG⊥AE于G,DG交OA于F.求证:OE=OF. 学生在相互转换的过程中获得丰富的感知.在教学中渗透类比思想.不但完成了学习任务,而且还学会了知识之间的有机结合.真正体现了新课程理念中“以人为本,促进学生终身发展” 的教学理念.在教学中引导学生总结归纳,由此达到数学教学的新境界——提升思维品质,形成数学素养.
活动三:开放训练体现应用 第三步:、随堂练习1、正方形的四条边____ __,四个角___ ____,两条对角线____ ____.已知:如图,四边形ABCD为正方形,E、F分别为CD、CB延长线上的点,且DE=BF.求证:∠AFE=∠AEF.3、.如图,E为正方形ABCD内一点,且△EBC是等边三角形,求∠EAD与∠ECD4.已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.求证:EA⊥AF.5.已知:如图,正方形ABCD中,E为BC上一点,AF平分∠DAE交CD于F,求证:AE=BE+DF. 体现了教学的连贯性,也体现出数学知识的实用性.学以致用的体验,使学生感受到数学学习是有趣的、丰富的、有价值的.学生审题是解题的关键,通过运用正方形的性质,学会解决简单的实际问题的能力,让学生认识到现实生活中蕴含着大量的数学信息,数学在现实世界中有着广泛的应用,培养学生的应用意识.通过例题和反馈练习实现了知识能力的转化,让学生主动用所学知识和方法寻求解决问题的策略.
活动四:反思小结 (1)正方形是怎样的平行四边形?有一组邻边相等,且有一个角是直角的平行四边形;(2)正方形是怎样的矩形?有一组邻边相等的矩形;(3)正方形是怎样的菱形?有一个角是直角的菱形;知识再现: ⑴ 对边平行 边 ⑵ 四边相等 ⑶ 四个角都是直角 角正方形 ⑷ 对角线相等 互相垂直 对角线 互相平分 平分一组对角 课后反思,能够促进理解,提高认识水平,从而促进数学观点的形成和发展,更好地进行知识建构,实现良性循环.教学中突出内容本质,渗透思想、方法.培养学生自我反馈、自主发展的意识.
附板书设计:
正方形判定
教学目的
1.掌握正方形的判定方法.
2.通过运用正方形的判定解题,培养学生的分析能力和观察能力.
3.通过正方形有关知识的学习,感受完美的正方形的图形美和语言美
教学设计:小结、归纳、提高
教学重点:正方形的判定方法.
教学难点:正方形判定方法的应用.
教学过程:
一.复习提问
1.矩形、菱形是怎样的特殊平行四边形,它们比平行四边形多些什么性质?
2.正方形是怎样的特殊平行四边形?正方形,菱形有什么关系?正方形有什么性质?
二.讲解新课
我们已经知道,正方形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:
1. 四条边都相等;
2. 四个角都是直角.
因此,正方形可以看作为:有一个角是直角的菱形;有一组邻边相等的矩形.
这些实际上就是判定正方形的方法.
例 如图20.4.1,△ABC中,∠ACB=90°,CD平分∠ACB,DE⊥BC, DF⊥AC,垂足分别为E、F.求证: 四边形CFDE是正方形.
分析 要证明四边形CFDE是正方形,可以先证四边形CFDE是矩形,然后再证有一组邻边相等;也可以先证四边形CFDE是菱形,然后再证有一个角是直角.
证明 ∵ CD平分∠ACB, DE⊥BC, DF⊥AC,
∴ DE=DF(角平分线上的点到角的两边距离相等).
又∵ ∠DEC=∠ECF=∠CFD=90°,
∴ 四边形CFDE是矩形(有三个角是直角的四边形是矩形),
∴ 四边形CFDE是正方形(有一组邻边相等的矩形是正方形).
正方形的判定方法:提问:
1:对角线相等的菱形是正方形吗?
2:对角线互相垂直的矩形是正方形吗?为什么?
3:对角线垂直且相等的四边形是正方形吗?为什么?
4:四条边都相等的四边形是正方形吗?为什么?
5:说“四个角相等的四边形是正方形”对吗?
三.小结:
(1)判定一个四边形为正方形的基本方法:定义法,矩形菱形法.
(2)正方形的性质较多,在证题时要灵活应用.
2.思考题:已知如图3正方形的边长为1,、上都有一点、,如果△周长为2,求度数.
四.布置作业:教材练习1,2
图3
感谢您下载使用【班海】教学资源。班海——老师们都在免费用的数学作业精细批改微信小程序!
A
B
C
D
E
F
一键发布配套作业 & AI智能精细批改
(任务-发布任务-选择章节)