班海数学精批——一本可精细批改的教辅
简易方程
第1课时
教学目标:
1.使学生在具体的情境中,根据题中数量间的相等关系,能正确列方程解决简单的实际问题,掌握列方程解决实际问题的思考方法。
2.使学生在经历将实际问题抽象成方程的过程中,积累将现实问题数学化的经验,进一步感受方程的思想方法和应用价值。
3.通过学习,进一步培养学生独立思考,主动与他人合作,自觉检验的良好习惯。
教学重点:学会列方程解决一步计算的实际问题。
教学难点:掌握列方程解决实际问题的基本思考方法。
课前准备:课件。
教学过程:
一、新课导入
1.谈话:我们已经学习了等式的两个性质,今天这节课,我们将继续学习用不同的方法写出方程的数量关系,但不管是什么形式,其本质是一样的。
2.课件出示例7:
学生读题,理解题意说说题中的条件和问题,再找出数量之间的相等关系。学生的回答可能有:
①去年的体重+=今年的体重
②今年的体重—去年的体重=2.5米
根据学生的回答列方程解答。
解:设小红去年的体重为x千克。
X+2.5=36 36-X=2.5
你是怎样检验的?在小组里交流后,集体交流。
3.列方程解决实际问题时要注意什么?
二、完成“练一练”
先说说题中的数量关系,再说说怎样设未知数,然后根据数量关系列方程解答。
三、反馈检测
1.完成练习二的第1题
先让学生说说解方程的思路,然后让学生独立完成,集体交流。
2.完成练习二的第2题
先说说题中的数量关系,再说说怎样设未知数。
3.完成练习二的第3题
先让学生独立完成,再说说每题中的数量关系和解题过程。
4.完成练习二的第4题
学生理解题意后独立完成,再说说每题中的数量关系和解题过程。
5.完成练习二的第5题
三生板演,其余生独立完成在自备本上后集体校对,再向同桌说说解方程的注意点:写上“解”,利用等式的性质一步一步解出x的值,最后要检验。
四、全课小结
提问:今天这节课我们学习了什么内容?要注意什么?
第2课时
教学目标:
1.能准确找出问题中相等关系的量,根据其数量关系列出方程。
2.使学生学会应用等式的性质解两步解的方程。
3.渗透转化思想,学习解决问题的策略。
4.注重联系生活实际,获得成功体验。
教学重点:使学生能熟练找出问题中相等关系的量,根据其数量关系列出方程并应用等式的性质解两步解的方程。
教学难点:渗透转化思想,学习解决问题的策略。
课前准备:课件。
教学过程:
一、复习导入
1.找出下列关键句中的数量关系:
女生人数是男生人数的2倍
足球的个数比篮球多35个
鸽子的只数相当于麻雀的5倍多9只
语文书的4倍少10本正好是数学书的本数
2.应用等式的性质说说解方程的过程:
4x = 56 x+15 = 30 x÷9 = 23
x - 98 = 100 5 x – 6 = 9
你觉得这个方程和我们以前学过的有什么不同?你有什么办法解方程?
二、新授教学
1.学习例8
师出示题目,说说题目中的数量关系。(生自由说再指名校对)你有什么解题方法?
列方程解答的步骤是怎样的?(先找出数量关系,再设未知量为x,列出方程,根据等式的性质解方程。)
你们想自己先试试看吗?(生尝试练习,两生板演后反馈)
解:设小雁塔的高度为x米。
2x-22=64(数量关系:小雁塔高度的2倍少22米=大雁塔的高度)
2x-22+22=64+22(等式的性质)
2x =86
x=86÷2
x=43
这样就做完了吗?(还要检验)
如何检验?(先自己检验一下,再同桌交流,最后指名检验)
注意:要将x的值代入题目中检验才比较准确。
答:小雁塔高43米。
2.在解方程的过程中还有什么不理解的?有没有其它想法?(为什么不利用等式的性质先将左右两边都÷2,这样做行不行?为什么?)引导同学们理解这里将2x看作一个整体的未知数来解。先求出2x的值是多少,再求出x的值是多少,要两步解。
揭题:两步解的方程
3.从读题后找出数量关系到列方程、解方程、检验,你觉得哪里很关键,哪里还有些困难?
三、专项练习
1.根据关键句说说数量关系:
杭州湾大桥比香港青马大桥的16倍还多0.8千米
梨树比桃树的3倍多15棵
放养的鳊鱼比鲫鱼的4倍少80尾
猎豹比猫最快时速的2倍还多20千米
故宫比天安门广场的2倍少8公顷
一个驼鸟蛋长比一只蜂鸟体长的3倍还多1厘米
2.练习二第6题
在括号里填上含有字母的式子,生独立完成后校对。
3.练习二第7题
学生独立完成,集体交流
4.练习二第8题
生独立完成,两生板演后校对。
四、总结
师:今天我们一起学习了什么知识?在脑子里回忆一下解两步方程的过程,再同桌互相交流解题的注意点。
第3课时 列方程解决实际问题
教学目标:
1.使学生在解决实际问题的过程中,理解并掌握形如ax+bx=c的方程的解法,会列上述方程解决两步计算的实际问题。
2.掌握根据题意找出数量间相等关系的方法,养成根据等量关系列方程的习惯。
教学重点:掌握列方程解应用题的基本方法, 在理解题意分析数量关系的基础上正确找出应用题中数量间的相等关系
教学难点:能正确找出应用题中数量间的相等关系。
课前准备:课件。
教学过程:
一、谈话导入
今天研究一个与颐和园有关的数学问题
二、学习新知
1.例9
(1)指名读题 ,分析数量关系。
用线段图表示出题目中数量之间的关系吗?
学生尝试画图,集体交流。
根据线段图得到:水面面积+陆地面积=颐和园的占地面积
启发:这大题目中有两个未知数,我们设谁为x呢?
(2)列方程并解方程
指名学生列出方程,鼓励学生独立求解。
如果用x表示陆地面积,那么可以怎样表示水面面积呢?
追问:这道题可以怎样检验?
检验:A、72.5+72.5×3=290(公顷) B、217.5÷72.5=3
(3)观察我们今天学习的方程,与前面的有什么不同?
小结:像这样含有两个未知数的问题我们也可以列方程来解答。
(4)学生独立完成练一练第1题
三、巩固练习
1.练一练第2题
教师引导学生找出数量关系式
陆地面积×2.4-陆地面积=2.1
2.解方程
2x+3x=60 3.6x-2.8x=12 100x-x=198
师:这几道方程以例题中的方程有什么共同特点,解这一类方程时要先做什么?依据是什么?
3.根据线段图列出方程
4.解决实际问题:(列方程解)
(1)柏树松数共有750棵,柏树的棵数是松树的1.5倍,两种树各多少棵? 为什么选择松树的数量设为x呢?
(2)一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?
在做这道题时你认为应注意什么呢?
四、反思总结
这节课学习了列方程解决问题?
在解答这一类应用题时应注意什么?
第二课时 列方程解决实际问题——相遇问题
教学目标:
1.使学生在解决实际问题的过程中,进一步理解并掌握形如ax+bx=c的方程的解法。 结合具体事例,经历自主尝试列方程解决稍复杂的相遇问题的过程。
2.能根据相遇问题中的等量关系列方程并解答,感受解题方法的多样化。
3.体验用方程解决问题的优越性,获得自主解决问题的积极情感和学好数学的信心
教学重点:正确地寻找数量之间的相等关系。
教学难点:掌握列方程解具有两积之和(或差)的数量关系的应用题的解法。
课前准备:课件。
教学过程:
一、复习导入
1.在相遇问题中有哪些等量关系
甲速×相遇时间+乙速×相遇时间=路程 (甲速+乙速)×相遇时间=路程
2、一辆客车和一辆货车从两地出发,相向而行,经过3小时相遇。客车的速度是95千米/时,货车的速度是85千米/时。两地相距多少千米?
第一种解法:用两车的速度和×相遇时间:(95+85)×3
第二种解法:把两车相遇时各自走的路程加起来:95×3+85×3
师:画出线段图,并板书出两种解法
3.揭示课题:如果我们把复习准备中的第2题改成“已知两地之间的路程、相遇时间及其中一辆车的速度,求另一辆车的速度”,要求用方程解,又该怎样解答呢 这节课我们就来学习列方程解相遇问题的应用题。 (板书课题)
二、教学新课
1.出示例10
一辆客车和一辆货车从相距540千米的两地出发,相向而行,经过3小时相遇。客车的速度是95千米/时,货车的速度是多少?
(1)指名读题,找出已知所求,引导学生根据复习题的线段图画出线段图。
(2)根据线段图学生找出数量间的相等关系:
甲速×相遇时间+乙速×相遇时间=路程
(甲速+乙速)×相遇时间=路程
(1)列方程
设未知数列方程并解答。启发学生用不同方法列方程。
解:设货车的速度是为x千米/时。
95×3+3x=540 (95+x)×3=540
285+3x=1463 95+x=540÷3
3x=540-285 95+x=180
3x= 255 x=180-95
x=255÷3 x=85
x=85
答:货车的速度是为85千米/时.
(4)检验
三、拓展应用
1.练一练
(1)先画线段图整理条件和问题
(2)找出数量间的相等关系
(3)列方程并解方程
2.第4题
1.5x-x=1 4x-8×5=20 0.2×2+0.4x=5
3.看图列式
(1)求路程
(2)求相遇时间
(3) 求乙汽车速度
4练习三第7题
四、反思总结
今天这节课我们学习了什么内容?你有哪些收获?
感谢您下载使用【班海】教学资源。班海——老师们都在免费用的数学作业精细批改微信小程序!