《命题、定理》同步练习
班别___ 姓名_____ 学号___
一、填空题:(每题4分,共40分)
1、每个命题都由_____和_____两部分组成。
2、命题“对顶角相等”的题设是_____________,结论是_________
3、命题“同位角相等”改写成“如果…,那么…”的形式是______________
4、请用“如果…,那么…”的形式写一个命题:___________________
5、一个命题,如果题设成立,结论一定成立,这样的命题是___命题;如果题设成立,结论不成立或不一定成立,这样的命题是___命题(填“真”、“假”)
6、以下四个命题:①一个锐角与一个钝角的和为180°;②若m不是正数,则m一定小于零;③若ab>0,则a>0,b>0;④如果一个数能被2整除,那么这个数一定能被4整除。其中真命题有___个。
7、下列语句:①对顶角相等;②OA是∠BOC的平分线;③相等的角都直角;④线段AB。其中不是命题的是_______(填序号)
8、“两直线相交只有一个交点”的题设是____________________。
9、命题“a、b是有理数,若a>b,则a2>b2”,若结论保持不变,怎样改变条件,命题才是真命题。请你写出一种改法:______________________
10、对于同一平面内的三条直线a、b、c给出以下五个结论:① a∥b;② b∥c;③ a⊥b;④ a∥c;⑤ a⊥c。以其中两个为题设,一个为结论,组成一个正确的命题:____
二、选择题(每题4分,共20分)
11、如图,直线c与a、b相交,且a∥b,则下列结论:(1)∠1=∠2;(2)∠1=∠3;(3)∠2=∠3。其中正确的个数为( )
A 0 B 1 C 2 D 3
12、下列命题正确的是( )
A两直线与第三条直线相交,同位角相等; B两直线与第三条直线相交,内错角相等
C两直线平行,内错角相等; D两直线平行,同旁内角相等
13、在同一平面内,直线a、b相交于O,b∥c,则a与c的位置关系是( )
A 平行 B 相交 C 重合 D平行或重合
14、下列语句不是命题的为( )
A两点之间,线段最短 B同角的余角不相等
C作线段AB的垂线 D不相等的角一定不是对顶角
15、下列命题是真命题的是( )
A和为180°的两个角是邻补角; B一条直线的垂线有且只有一条;
C点到直线的距离是指这点到直线的垂线段;
D两条直线被第三条直线所截,内错角相等,则同位角必相等。
三、解答题:(每题10分,共40分)
16、指出下列命题的题设和结论,并判断其真假:
(1)个位是0的整数能被5整除;( )
题设:
结论:
(2)、同位角相等,两直线平行;( )
(3)、同角的补角相等;( )
(4)垂直于同一直线的两条直线互相垂直;( )
(5)如果一个数的绝对值等于它本身,那么这个数一定是正数;( )
17、阅读以下两小题后作出相应的解答:
(1)“同位角相等,两直线平行”,“两直线平行,同位角相等”,这两个命题的题设和结论在命题中的位置恰好对调,我们把其中一个命题叫做另一个命题的逆命题。请你写出命题“角平分线上的点到角两边的距离相等”的逆命题,并指出逆命题的题设和结论。
解:逆命题是:
其题设是: , 结论是: 。
它是___命题。
18、如图,给出下列论断:(1)AB∥DC;(2)AD∥BC;(3)∠A+∠B=180°;(4)∠B+∠C=180°。以其中一个作题设,一个作结论,写出一个真命题:______________________________
想一想,若连结BD,你能写出一个真命题吗?试写出一个真命题,并写出推理过程。
19、如图,已知AD∥CB,∠1=∠2,∠BAE=∠DCF。试说明:(1)AE∥CF;(2)AB∥CD。