高考物理一轮复习知识点讲义 专题130 对称法(教师版+学生版)

文档属性

名称 高考物理一轮复习知识点讲义 专题130 对称法(教师版+学生版)
格式 zip
文件大小 2.8MB
资源类型 教案
版本资源 通用版
科目 物理
更新时间 2023-01-27 09:20:40

文档简介

专题130 对称法
对称法就是利用物理现象、物理过程具有对称性的特点来分析解决物理问题的方法.自然界和自然科学中,普遍存在着优美和谐的对称现象. 物理学习中有镜像对称、时间对称、空间对称等。.常见的应用:(1)运动的对称性,如竖直上抛运动中物体向上、向下运动的两过程中同位置处速度大小相等,加速度相等;(2)结构的对称性,如均匀带电的圆环,在其圆心处产生的电场强度为零;(3)几何关系的对称性,如粒子从某一直线边界射入磁场,再从同一边界射出磁场时,速度与边界的夹角相等;(4)场的对称性,等量同种、异种电荷形成的场具有对称性;电流周围的磁场,条形磁铁和通电螺线管周围的磁场等都具有对称性.
最新高考题精选
1. . (2022高考湖北物理)在如图所示的平面内,分界线SP将宽度为L的矩形区域分成两部分,一部分充满方向垂直于纸面向外的匀强磁场,另一部分充满方向垂直于纸面向里的匀强磁场,磁感应强度大小均为B,SP与磁场左右边界垂直。离子源从S处射入速度大小不同的正离子,离子入射方向与磁场方向垂直且与SP成30°角。已知离子比荷为k,不计重力。若离子从Р点射出,设出射方向与入射方向的夹角为θ,则离子的入射速度和对应θ角的可能组合为(  )
A. kBL,0° B. kBL,0° C. kBL,60° D. 2kBL,60°
【参考答案】BC
【命题意图】本题考查带电粒子在匀强磁场中的运动。
【解题思路】若粒子通过下部分磁场直接到达P点,如图
根据带电粒子在直线边界运动的对称性可知,若从P点的出射方向与右侧边界向上的夹角为60°,
根据几何关系则有,
可得
根据对称性可知出射速度与SP成30°角向上,故出射方向与入射方向夹角为θ=60°。
当粒子上下均经历一次时,如图
因为上下磁感应强度均为B,则根据对称性有
根据洛伦兹力提供向心力有
可得
此时出射方向与入射方向相同,即出射方向与入射方向的夹角为θ=0°。
通过以上分析可知当粒子从下部分磁场射出时,需满足(n=1,2,3……)
此时出射方向与入射方向的夹角为θ=60°;
当粒子从上部分磁场射出时,需满足(n=1,2,3……)
此时出射方向与入射方向的夹角为θ=0°。
故可知BC正确,AD错误。
2. (2021年1月浙江选考)某一滑雪运动员从滑道滑出并在空中翻转时经多次曝光得到的照片如图所示,每次曝光的时间间隔相等。若运动员的重心轨迹与同速度不计阻力的斜抛小球轨迹重合,A、B、C和D表示重心位置,且A和D处于同一水平高度。下列说法正确的是
A.相邻位置运动员重心的速度变化相同
B.运动员在A、D位置时重心的速度相同
C.运动员从A到B和从C到D的时间相同
D.运动员重心位置的最高点位于B和C中间
【参考答案】A
【解题思路】根据题述,每次曝光的时间间隔T相等,运动员做斜抛运动,只受重力作用,由牛顿第二定律,可知斜抛运动的加速度为重力加速度g,由g=,相邻位置,△t=T,相邻位置运动员重心的速度变化△v=gT,即相邻位置运动员重心的速度变化△v相同,选项A正确;AD位置处于同样高度,由斜抛运动的对称性可知,运动员在A、D位置时重心的速度大小相等,方向不同,选项B错误;由题图可知C位置是斜抛运动的最高点,所以运动员从A到B的时间小于从C到D的时间,选项CD错误。
3.(2008·江苏)抛体运动在各类体育运动项目中很常见,如乒乓球运动.现讨论乒乓球发球问题,设球台长2L、网高h,乒乓球反弹前后水平分速度不变,竖直分速度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力.(设重力加速度为g)
⑴若球在球台边缘O点正上方高度为h1处以速度v1,水平发出,落在球台的P1点(如题5A-1图实线所示),求P1点距O点的距离x1..
⑵若球在O点正上方以速度v2水平发出,恰好在最高点时越过球网落在球台的P2(如题5A-1图虚线所示),求v2的大小.
⑶若球在O正上方水平发出后,球经反弹恰好越过球网且刚好落在对方球台边缘P3,求发球点距O点的高度h3.
【名师解析】.⑴据平抛规律得:,
联立解得:
⑵同理得:,
且:,
联立解得:
⑶如图,同理得:,,
且:
设球从恰好越过球网到最高点的时间为t,水平距离为s,有:
,,
由几何关系得:
解得:
最新模拟题精选
1. (2022河北重点中学期中素养提升)如图所示,半径为R的圆形区域内有垂直于圆面向里的匀强磁场,磁感应强度大小为B,AC是圆的一条直径,D为圆上一点,∠COD=60°。在A点有一个粒子源,沿与AC成30°角斜向上垂直磁场的方向射出速率均为v的各种带正电粒子,所有粒子均从圆弧CD射出磁场,不计粒子的重力及粒子间的相互作用。则从A点射出的粒子的比荷可能是(  )
A. B.
C. D.
【参考答案】AD
【名师解析】
带电粒子从C点射出磁场,轨迹如图所示
由几何关系得
解得
带电粒子从D点射出磁场,轨迹如图所示
由几何关系得是菱形,所以粒子的轨迹半径
所以粒子在磁场中运动的轨迹半径满足
由洛伦兹力提供向心力得
解得从A点射出的粒子的比荷满足
故选AD。
2. (2022河北唐山三模)如图为控制高能粒子在不同位置发生正碰的装置。关于y轴对称间距为的直线边界和之间有两个有界匀强磁场。两磁场的边界在x轴上方,与x轴距离h可调。下方磁场垂直纸面向里,上方磁场垂直纸面向外,磁感应强度均为B。高速正、负电子分别从和磁场边界上沿x轴以相同速率同时进入磁场。调节电子速率和h,控制正负电子在y轴不同位置发生正碰,碰撞时速度与y轴垂直。已知电子质量为m、电荷量大小为e、不计粒子间的相互作用力和重力。求:
(1)正、负电子同时以相同速度进入磁场,经过边界一次后在y轴发生正碰,求h大小;
(2)正、负电子同时以相同速度进入磁场,调节h使正负电子在y轴不同位置发生正碰,求h的可能大小。
【参考答案】(1);(2)见解析
【名师解析】
(1)设正、负电子以速度v1在匀强磁场中做匀速圆周运动的轨迹半径为r1,根据牛顿第二定律有
解得
r1=
如图所示,根据对称性可知
(2)设正、负电子以速度v2在匀强磁场中做匀速圆周运动的轨迹半径为r2,根据牛顿第二定律有
解得
如图所示,当时,正、负电子仅可能在O点发生正碰,根据几何关系有
解得
当h< r2时,如图所示,正、负电子在两磁场中存在往复运动的情况,根据几何关系有
解得
3. (2022河北石家庄二中模拟)如图所示,厚度不计的光滑绝缘板、间距为,板长为,板间有垂直纸面向里的匀强磁场,磁感应强度大小。两板的上边界连线及其上方和下边界连线及其下方的空间都存在垂直于纸面向里的匀强磁场,磁感应强度大小为。一个质量为的带电的粒子,电量为,从的中点S与板成角垂直于磁场射入板间,在磁场作用下经点垂直于边界并恰好能无碰撞地射入上部磁场区域,轨迹如图所示,不计粒子重力。
(1)求粒子从S点射入板间的速度的大小;
(2)若该粒子射入上部磁场区后,又恰好能从点无碰撞地返回板间磁场,运动过程中与绝缘板相碰时无能量损失且遵循反射定律,经过一段时间后该粒子能再回到S点(回到S点的运动过程中与板只碰撞一次),求粒子从S点出发到再回到S点的时间;
(3)若其他条件均不变,板不动,将板从原位置起向右平移,且保证区域内始终存在垂直纸面向里的匀强磁场,若仍需让粒子回到S点(回到S点的运动过程中仍然与板只碰撞一次),则到的垂直距离应满足什么关系?(用来表示)
【参考答案】(1);(2);
(3),()或,()
【名师解析】
(1)、间距离,且S为中点,根据几何关系
有,,
从S点射入速度
(2)由对称性,粒子将打到中点并反弹,再次回到S点的轨迹如图。从图知,粒子从点进入磁场后做半个圆周再次进入,所以在中,,在中,
又,
解得,,
故粒子在场中时间
粒子在场中时间
(3)如图所示,由粒子运行的周期性以及与板碰撞遵循反射定律,有如下结果:
,()或,()
4. (2022广东汕头模拟)如图所示,PQ、MN是相互平行、间距为L的长直边界,在两边界外侧都存在匀强磁场,方向均垂直于纸面向内,右侧磁场的磁感应强度为B。一质量为m、电荷量为的带电粒子从MN边界的O点以大小为的初速度垂直于边界沿纸面射入右侧磁场区,一段时间后粒子再次经过O点,这过程中粒子有两次进入左侧磁场区运动。不计粒子的重力。
(1)求左侧磁场的磁感应强度;
(2)在PQ、MN边界之间的区域加上方向垂直于边界的匀强电场,然后使粒子从O点以同样的条件射出,结果粒子同样能返回O点,而且所用时间比原来变短。求匀强电场的场强E的可能值;
(3)在第(2)问的前提下,讨论粒子从O点射出到返回O点的最短时间与磁感应强度B的关系。
【参考答案】(1);(2);(3)
【名师解析】
(1)粒子有两次进入左侧磁场区运动,最后再次经过O点,则轨迹如图,由几何关系可知,设粒子在左右两边磁场中运动的半径分别为R和r,则
根据
可得左侧磁场的磁感应强度
(2)若在PQ、MN边界之间的区域加上方向垂直于边界的匀强电场,且能返回O点,而且所用时间比原来变短,且
则粒子首次进入电场时必然做加速运动,则场强方向向左,且回到右侧磁场时速度不变,仍为v0,在右侧磁场中的运动半径不变,因粒子还能经过O点,则半径关系式满足
n(2R-2r)=2r(其中n=1、2、3……)
设粒子进入左侧磁场时的速度为v,则
可得

因粒子在电场中加速,且所用时间比原来变短,则
v>v0
则表达式
中n只能取1,即
粒子在电场中的加速度
解得
(3)当粒子返回O点的时间最短时,则对应于n=1的情况,最短时间为
其中的
解得
5.(2020高考二轮模拟)如图所示,M、N为两个等大的均匀带电圆环,其圆心分别为A、C,带电荷量分别为+Q、-Q,将它们平行放置,A、C连线垂直于圆环平面,B为AC的中点,现有质量为m、带电荷量为+q的微粒(重力不计)从左方沿A、C连线方向射入,到A点时速度vA=1 m/s,到B点时速度vB= m/s,则(  )
A.微粒从B至C做加速运动,且vC=3 m/s
B.微粒在整个运动过程中的最终速度为 m/s
C.微粒从A到C先做加速运动,后做减速运动
D.微粒最终可能返回至B点,其速度大小为 m/s
【参考答案】AB.
【名师解析】由于 M、N为两个等大的均匀带电圆环之间电场是对称的,A到B的功和B到C的功相同,依据动能定理可得:qEd=mv-mv,2qEd=mv-mv,解得vC=3 m/s,A正确;过B做垂直AC的线,此线为等势面,微粒出C之后,会向无穷远处运动,而无穷远处电势为零,故B点的动能等于无穷远处的动能,依据能量守恒可以得到微粒最终的速度应该与B点相同,均为vB= m/s,B正确、D错误;在到达A点之前,微粒做减速运动,而从A到C微粒一直做加速运动,C错误.
6. 一小物体以一定的初速度自光滑斜面的底端a点上滑,最远可达b点,e为ab的中点,已知物体由a到e的时间为t0,则它从e经b再返回e所需时间为( )
A.t0 B..(-1)t0
C..2 (+1)t0 D.. (2+1)t0
【参考答案】C
【名师解析】把小物体以一定的初速度自光滑斜面的底端a点上滑的匀减速直线运动,逆向思维为由最远点b沿光滑斜面向下的初速度为零的匀加速直线运动。设ab的距离为2L,小物体由b运动到e的时间为t,则有L=at2;小物体由e运动到a,则有L=a(t0+t)2-at2;联立解得: t= (+1)t0。由运动的对称性可得从e到b和从b到e的时间相等,所以从e经b再返回e所需时间为2t= 2 (+1)t0,选项C正确。
【点评】此题中物体沿光滑斜面上滑,类似于竖直上抛运动,具有时间对称性、速度对称性和位移对称性。解题时要注意运用这些对称性,简化运算。
7. .在竖直平面内固定一光滑细圆管道,管道半径为R.若沿如图所示的两条虚线截去轨道的四分之一,管内有一个直径略小于管径的小球在运动,且恰能从一个截口抛出,从另一个截口无碰撞的进入继续做圆周运动.那么小球每次飞越无管区域的时间为(  )
A. B.
C. D.
【参考答案】.B
【名师解析】则小球离开管口后只受重力作用,做斜抛运动。由于小球在竖直虚线两侧的运动对称。分析小球从最高点到进入截口的平抛运动,小球进入截口时速度方向与水平方向成45°角,小球水平分速度vx和竖直分速度vy相等。由图中几何关系可知,小球从最高点运动到截口时水平位移为x=Rcos45°=R。根据平抛运动规律,x=vxt,y=vyt,联立解得:y=R。由y=gt2,解得:t=。小球从离开管口运动到最高点的斜抛运动过程可逆向思维为从最高点运动到管口的平抛运动,所以小球每次飞越无管区域的时间为T=2t=2×=,选项B正确。
8. .三颗相同的质量都是M的星球位于边长为L的等边三角形的三个顶点上。如果它们中的每一颗都在相互的引力作用下沿外接于等边三角形的圆轨道运行而保持等边三角形不变,下列说法正确的是
A.其中一个星球受到另外两个星球的万有引力的合力大小为
B.其中一个星球受到另外两个星球的万有引力的合力指向圆心O
C.它们运行的轨道半径为L
D.它们运行的速度大小为
【参考答案】B
【名师解析】根据万有引力定律,任意两颗星球之间的万有引力为F1=G,方向沿着它们的连线。其中一个星球受到另外两个星球的万有引力的合力为F=2 F1cos30°=G,方向指向圆心,选项A错误B正确;由r cos30°=L/2,解得它们运行的轨道半径r=L,选项C错误;由G=M可得v= ,选项D错误。专题130 对称法
对称法就是利用物理现象、物理过程具有对称性的特点来分析解决物理问题的方法.自然界和自然科学中,普遍存在着优美和谐的对称现象. 物理学习中有镜像对称、时间对称、空间对称等。.常见的应用:(1)运动的对称性,如竖直上抛运动中物体向上、向下运动的两过程中同位置处速度大小相等,加速度相等;(2)结构的对称性,如均匀带电的圆环,在其圆心处产生的电场强度为零;(3)几何关系的对称性,如粒子从某一直线边界射入磁场,再从同一边界射出磁场时,速度与边界的夹角相等;(4)场的对称性,等量同种、异种电荷形成的场具有对称性;电流周围的磁场,条形磁铁和通电螺线管周围的磁场等都具有对称性.
最新高考题精选
1. . (2022高考湖北物理)在如图所示的平面内,分界线SP将宽度为L的矩形区域分成两部分,一部分充满方向垂直于纸面向外的匀强磁场,另一部分充满方向垂直于纸面向里的匀强磁场,磁感应强度大小均为B,SP与磁场左右边界垂直。离子源从S处射入速度大小不同的正离子,离子入射方向与磁场方向垂直且与SP成30°角。已知离子比荷为k,不计重力。若离子从Р点射出,设出射方向与入射方向的夹角为θ,则离子的入射速度和对应θ角的可能组合为(  )
A. kBL,0° B. kBL,0° C. kBL,60° D. 2kBL,60°
2. (2021年1月浙江选考)某一滑雪运动员从滑道滑出并在空中翻转时经多次曝光得到的照片如图所示,每次曝光的时间间隔相等。若运动员的重心轨迹与同速度不计阻力的斜抛小球轨迹重合,A、B、C和D表示重心位置,且A和D处于同一水平高度。下列说法正确的是
A.相邻位置运动员重心的速度变化相同
B.运动员在A、D位置时重心的速度相同
C.运动员从A到B和从C到D的时间相同
D.运动员重心位置的最高点位于B和C中间
3.(2008·江苏)抛体运动在各类体育运动项目中很常见,如乒乓球运动.现讨论乒乓球发球问题,设球台长2L、网高h,乒乓球反弹前后水平分速度不变,竖直分速度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力.(设重力加速度为g)
⑴若球在球台边缘O点正上方高度为h1处以速度v1,水平发出,落在球台的P1点(如题5A-1图实线所示),求P1点距O点的距离x1..
⑵若球在O点正上方以速度v2水平发出,恰好在最高点时越过球网落在球台的P2(如题5A-1图虚线所示),求v2的大小.
⑶若球在O正上方水平发出后,球经反弹恰好越过球网且刚好落在对方球台边缘P3,求发球点距O点的高度h3.
最新模拟题精选
1. (2022河北重点中学期中素养提升)如图所示,半径为R的圆形区域内有垂直于圆面向里的匀强磁场,磁感应强度大小为B,AC是圆的一条直径,D为圆上一点,∠COD=60°。在A点有一个粒子源,沿与AC成30°角斜向上垂直磁场的方向射出速率均为v的各种带正电粒子,所有粒子均从圆弧CD射出磁场,不计粒子的重力及粒子间的相互作用。则从A点射出的粒子的比荷可能是(  )
A. B.
C. D.
2. (2022河北唐山三模)如图为控制高能粒子在不同位置发生正碰的装置。关于y轴对称间距为的直线边界和之间有两个有界匀强磁场。两磁场的边界在x轴上方,与x轴距离h可调。下方磁场垂直纸面向里,上方磁场垂直纸面向外,磁感应强度均为B。高速正、负电子分别从和磁场边界上沿x轴以相同速率同时进入磁场。调节电子速率和h,控制正负电子在y轴不同位置发生正碰,碰撞时速度与y轴垂直。已知电子质量为m、电荷量大小为e、不计粒子间的相互作用力和重力。求:
(1)正、负电子同时以相同速度进入磁场,经过边界一次后在y轴发生正碰,求h大小;
(2)正、负电子同时以相同速度进入磁场,调节h使正负电子在y轴不同位置发生正碰,求h的可能大小。
3. (2022河北石家庄二中模拟)如图所示,厚度不计的光滑绝缘板、间距为,板长为,板间有垂直纸面向里的匀强磁场,磁感应强度大小。两板的上边界连线及其上方和下边界连线及其下方的空间都存在垂直于纸面向里的匀强磁场,磁感应强度大小为。一个质量为的带电的粒子,电量为,从的中点S与板成角垂直于磁场射入板间,在磁场作用下经点垂直于边界并恰好能无碰撞地射入上部磁场区域,轨迹如图所示,不计粒子重力。
(1)求粒子从S点射入板间的速度的大小;
(2)若该粒子射入上部磁场区后,又恰好能从点无碰撞地返回板间磁场,运动过程中与绝缘板相碰时无能量损失且遵循反射定律,经过一段时间后该粒子能再回到S点(回到S点的运动过程中与板只碰撞一次),求粒子从S点出发到再回到S点的时间;
(3)若其他条件均不变,板不动,将板从原位置起向右平移,且保证区域内始终存在垂直纸面向里的匀强磁场,若仍需让粒子回到S点(回到S点的运动过程中仍然与板只碰撞一次),则到的垂直距离应满足什么关系?(用来表示)
4. (2022广东汕头模拟)如图所示,PQ、MN是相互平行、间距为L的长直边界,在两边界外侧都存在匀强磁场,方向均垂直于纸面向内,右侧磁场的磁感应强度为B。一质量为m、电荷量为的带电粒子从MN边界的O点以大小为的初速度垂直于边界沿纸面射入右侧磁场区,一段时间后粒子再次经过O点,这过程中粒子有两次进入左侧磁场区运动。不计粒子的重力。
(1)求左侧磁场的磁感应强度;
(2)在PQ、MN边界之间的区域加上方向垂直于边界的匀强电场,然后使粒子从O点以同样的条件射出,结果粒子同样能返回O点,而且所用时间比原来变短。求匀强电场的场强E的可能值;
(3)在第(2)问的前提下,讨论粒子从O点射出到返回O点的最短时间与磁感应强度B的关系。
5.(2020高考二轮模拟)如图所示,M、N为两个等大的均匀带电圆环,其圆心分别为A、C,带电荷量分别为+Q、-Q,将它们平行放置,A、C连线垂直于圆环平面,B为AC的中点,现有质量为m、带电荷量为+q的微粒(重力不计)从左方沿A、C连线方向射入,到A点时速度vA=1 m/s,到B点时速度vB= m/s,则(  )
A.微粒从B至C做加速运动,且vC=3 m/s
B.微粒在整个运动过程中的最终速度为 m/s
C.微粒从A到C先做加速运动,后做减速运动
D.微粒最终可能返回至B点,其速度大小为 m/s
6. 一小物体以一定的初速度自光滑斜面的底端a点上滑,最远可达b点,e为ab的中点,已知物体由a到e的时间为t0,则它从e经b再返回e所需时间为( )
A.t0 B..(-1)t0
C..2 (+1)t0 D.. (2+1)t0
7. .在竖直平面内固定一光滑细圆管道,管道半径为R.若沿如图所示的两条虚线截去轨道的四分之一,管内有一个直径略小于管径的小球在运动,且恰能从一个截口抛出,从另一个截口无碰撞的进入继续做圆周运动.那么小球每次飞越无管区域的时间为(  )
A. B.
C. D.
8. .三颗相同的质量都是M的星球位于边长为L的等边三角形的三个顶点上。如果它们中的每一颗都在相互的引力作用下沿外接于等边三角形的圆轨道运行而保持等边三角形不变,下列说法正确的是
A.其中一个星球受到另外两个星球的万有引力的合力大小为
B.其中一个星球受到另外两个星球的万有引力的合力指向圆心O
C.它们运行的轨道半径为L
D.它们运行的速度大小为
同课章节目录