18.2.1矩形的性质 课件(共32PPT)+教学案

文档属性

名称 18.2.1矩形的性质 课件(共32PPT)+教学案
格式 zip
文件大小 6.1MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2023-01-30 15:30:07

文档简介

(共32张PPT)
18.2.1矩形的性质
人教版八年级下册
观察下面图形,长方形在生活中无处不在.
情景引入
思考 长方形跟我们前面学行四边形有什么关系?
你还能举出其他的例子吗?
矩形的性质

活动1:利用一个活动的平行四边形教具演示,使平行四边形的一个内角变化,请同学们注意观察.
矩形
平行四边形
矩形
有一个角
是直角
矩形是特殊的平行四边形.
定义:有一个角是直角的平行四边形
叫做矩形.也叫做长方形.
归纳总结
平行四边形不一定是矩形.
思考 因为矩形是平行四边形,所以它具有平行四边形的所有性质,由于它有一个角为直角,它是否具有一般平行四边形不具有的一些特殊性质呢?
可以从边,角,对角线等方面来考虑.
活动2:
准备素材:直尺、量角器、橡皮擦、课本、铅笔盒等.
(1)请同学们以小组为单位,测量身边的矩形(如书本,课桌,铅笔盒等)的四条边长度、四个角度数和对角线的长度及夹角度数,并记录测量结果.
A
B
C
D
O
AB AD AC BD ∠BAD ∠ADC ∠AOD ∠AOB
橡皮擦
课本
桌子
物体
测量
(实物)
(形象图)
(2)根据测量的结果,你有什么猜想?
猜想1 矩形的四个角都是直角.
猜想2 矩形的对角线相等.
你能证明吗?
证明:∵四边形ABCD是矩形,
∴∠B=∠D,∠C=∠A, AB∥DC.
∴∠B+∠C=180°.
又∵∠B = 90°,
∴∠C = 90°.
∴∠B=∠C=∠D=∠A =90°.
如图,四边形ABCD是矩形,∠B=90°.
求证: ∠B=∠C=∠D=∠A=90°.
证一证
证明:∵四边形ABCD是矩形,
∴AB=DC,∠ABC=∠DCB=90°,
在△ABC和△DCB中,
∵AB=DC,∠ABC=∠DCB,BC= CB,
∴△ABC≌△DCB.
∴AC=DB.
A
B
C
D
O
如图,四边形ABCD是矩形,∠ABC=90°,对角线AC与DB相交于点O.
求证:AC=DB.
矩形除了具有平行四边形所有性质,还具有的性质有:
矩形的四个角都是直角.
矩形的对角线相等.
归纳总结
几何语言描述:
在矩形ABCD中,对角线AC与DB相交于点O.
∠ABC=∠BCD=∠CDA=∠DAB =90°,AC=DB.
A
B
C
D
O
例1 如图,在矩形ABCD中,两条对角线AC,BD相交于点O,∠AOB=60°,AB=4 ,求矩形对角线的长.
解:∵四边形ABCD是矩形.
∴AC = BD,
OA= OC= AC,OB = OD = BD ,
∴OA = OB.
又∵∠AOB=60°,
∴△OAB是等边三角形,
∴OA=AB=4,
∴AC=BD=2OA=8.
A
B
C
D
O
典例精析
矩形的对角线相等且互相平分
例2 如图,在矩形ABCD中,E是BC上一点,AE=AD,DF⊥AE ,垂足为F.
求证:DF=DC.
A
B
C
D
E
F
证明:连接DE.
∵AD =AE,∴∠AED =∠ADE.
∵四边形ABCD是矩形,
∴AD∥BC,∠C=90°.
∴∠ADE=∠DEC,
∴∠DEC=∠AED.
又∵DF⊥AE, ∴∠DFE=∠C=90°.
又∵DE=DE,
∴△DFE≌△DCE,
∴DF=DC.
例3 如图,将矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=4,求△BED的面积.
解:∵四边形ABCD是矩形,
∴AD∥BC,∠A=90°,
∴∠2=∠3.
又由折叠知∠1=∠2,
∴∠1=∠3,∴BE=DE.
设BE=DE=x,则AE=8-x.
∵在Rt△ABE中,AB2+AE2=BE2,
∴42+(8-x)2=x2,
解得x=5,即DE=5.
∴S△BED= DE·AB= ×5×4=10.
矩形的折叠问题常与勾股定理结合考查
思考 请同学们拿出准备好的矩形纸片,折一折,观察并思考. 矩形是不是轴对称图形 如果是,那么对称轴有几条
矩形的性质:
对称性: .
对称轴: .
轴对称图形
2条
练一练
1.如图,在矩形ABCD中,对角线AC,BD交于点O,下列说法错误的是(  )
A.AB∥DC B.AC=BD
C.AC⊥BD D.OA=OB
A
B
C
D
O
C
2.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD面积的
_________.
             
3.如图,在矩形ABCD中,AE⊥BD于E,∠DAE:∠BAE=3:1,求∠BAE和∠EAO的度数.
解:∵四边形ABCD是矩形,
∴∠DAB=90°,
AO= AC,BO= BD,AC=BD,
∴∠BAE+∠DAE=90°,AO=BO.
又∵∠DAE:∠BAE=3:1,
∴∠BAE=22.5°,∠DAE=67.5°.
∵AE⊥BD,
∴∠ABE=90°-∠BAE=90°-22.5°=67.5°,
∴∠OAB=∠ABE=67.5°
∴∠EAO=67.5°-22.5°=45°.
直角三角形斜边上的中线的性质

A  
B  
C  
D  
O  
活动:如图,一张矩形纸片,画出两条对角线,沿着对角线AC剪去一半.
B
C
O
A
问题 Rt△ABC中,BO是一条
怎样的线段?它的长度与斜边
AC有什么关系?
猜想:直角三角形斜边上的中线等于斜边的一半.
试给出数学证明.
O
C
B
A
D
证明: 延长BO至D, 使OD=BO,
连接AD、DC.
∵AO=OC, BO=OD,
∴四边形ABCD是平行四边形.
∵∠ABC=90°,
∴平行四边形ABCD是矩形,
∴AC=BD,
如图,在Rt△ABC中,∠ABC=90°,
BO是AC上的中线.求证: BO = AC
∴BO= BD= AC.
1. 直角三角形斜边上的中线等于斜边的一半.
性质
证一证
例4 如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.
(1)若AB=10,AC=8,求四边形AEDF的周长;
解:∵AD是△ABC的高,E、F
分别是AB、AC的中点,
∴DE=AE= AB= ×10=5,
DF=AF= AC= ×8=4,
∴四边形AEDF的周长=AE+DE+DF+AF=
5+5+4+4=18;
典例精析
(2)求证:EF垂直平分AD.
证明:∵DE=AE,DF=AF,
∴E、F在线段AD的垂直平分线上,
∴EF垂直平分AD.
当已知条件含有线段的中点、直角三角形的条件时,可联想直角三角形斜边上的中线的性质进行求解.
归纳
例5 如图,已知BD,CE是△ABC不同边上的高,点G,F分别是BC,DE的中点,试说明GF⊥DE.
解:连接EG,DG.
∵BD,CE是△ABC的高,
∴∠BDC=∠BEC=90°.
∵点G是BC的中点,
∴EG= BC,DG= BC.
∴EG=DG.
又∵点F是DE的中点,
∴GF⊥DE.
在直角三角形中,遇到斜边中点常作斜边中线,进而可将问题转化为等腰三角形的问题,然后利用等腰三角形“三线合一”的性质解题.
归纳
如图,在△ABC中,∠ABC = 90°,BD是斜边AC上的中线.
(1)若BD=3cm,则AC =_____cm;
(2)若∠C = 30° ,AB = 5cm,则AC =_____cm, BD =_____cm.
A
B
C
D
6
10
5
练一练
当堂练习
1.矩形具有而一般平行四边形不具有的性质是 ( )
A.对角线相等 B.对边相等
C.对角相等 D.对角线互相平分
2.若直角三角形的两条直角边分别5和12,则斜边上的中线长为 ( )
A.13 B.6 C.6.5 D.不能确定
3.若矩形的一条对角线与一边的夹角为40°,则两条对角线相交的锐角是( )
A.20 ° B.40° C.80 ° D.10°
A
C
C
4.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF=______cm.
2.5
5.如图,△ABC中,E在AC上,且
BE⊥AC.D为AB中点,若DE=5,AE=8,
则BE的长为______.
6
第4图
第5题
(1)证明:∵四边形ABCD是矩形,
∴AC= BD,AB∥CD.
又∵BE∥AC,
∴四边形ABEC是平行四边形,
∴AC=BE,
∴BD=BE.
6.如图,四边形ABCD是矩形,对角线AC,BD相交于点O,BE∥AC交DC的延长线于点E.
(1)求证:BD=BE,
(2)若∠DBC=30° , BO=4 ,求四边形ABED的面积.
A
B
C
D
O
E
(2)解:∵在矩形ABCD中,BO=4,
∴BD = 2BO =2×4=8.
∵∠DBC=30°,
∴CD= BD= ×8=4,
∴AB=CD=4,DE=CD+CE=CD+AB=8.
在Rt△BCD中,
BC=
∴四边形ABED的面积= ×(4+8)× = .
A
B
C
D
O
E
7.如图,在矩形ABCD中,AB=6,AD=8,P是AD上的动点,PE⊥AC,PF⊥BD于F,求PE+PF的值.
解:连接OP.
∵四边形ABCD是矩形,
∴∠DAB=90°,OA=OD=OC=OB,
∴S△AOD=S△DOC=S△AOB=S△BOC
= S矩形ABCD= ×6×8=12.
在Rt△BAD中,由勾股定理得BD=10,
∴AO=OD=5,
∵S△APO+S△DPO=S△AOD,
∴ AO·PE+ DO·PF=12,即5PE+5PF=24,
∴PE+PF= .
课堂小结
矩形的相关概念及性质
具有平行四边行的一切性质
四个内角都是直角,
两条对角线互相平分且相等
轴对称图形
有两条对称轴
直角三角形斜边上的中线等于斜边的一半
有一个角是直角的平行四边形叫做矩形
谢谢
21世纪教育网(www.21cnjy.com)
中小学教育资源网站
兼职招聘:
https://www.21cnjy.com/recruitment/home/admin中小学教育资源及组卷应用平台
2022—2023学年度下学期八年级数学教学案 第4 周 第2节
课题 18.2.1 第1课时 矩形的性质
教学目标 知识与技能:矩形的性质,直角三角形斜边中线的性质过程与方法:经历由平行四边形到矩形需要增加的条件的探究过程,进而探索出矩形不同于平行四边形的独有性质。情感态度与价值观:
重点 矩形的性质,直角三角形斜边中线的性质
难点 通过推理论证,利用数学符号证明性质的正确性
教具 多媒体、教学案
教与学的过程 教与学的过程教与学的过程 教 与 学 的 内 容
思考:长方形跟我们前面学行四边形有什么关系? 矩形的性质活动1:利用一个活动的平行四边形教具演示,使平行四边形的一个内角变化,请同学们注意观察. 归纳总结定义:有一个角是直角的平行四边形叫做矩形.也叫做长方形.矩形是特殊的平行四边形. 平行四边形不一定是矩形.思考:因为矩形是平行四边形,所以它具有平行四边形的所有性质,由于它有一个角为直角,它是否具有一般平行四边形不具有的一些特殊性质呢?可以从边,角,对角线等方面来考虑.猜测:用尺度量矩形的各边长度和各对角线的长度,根据测量的结果,猜想一下矩形的边,角,对角线是否有不同于平行四边形的独特性质? 证一证:如图,四边形ABCD是矩形,∠B=90°.求证: ∠B=∠C=∠D=∠A=90°. 如图,四边形ABCD是矩形,∠ABC=90°,对角线AC与DB相交于点O.求证:AC=DB. 矩形除了具有平行四边形所有性质,还具有的性质有: 矩形的四个角都是直角. 矩形的对角线相等. 几何语言描述:∵ 四边形ABCD是矩形,∴∠ABC=∠BCD=∠CDA=∠DAB =90°,AC=DB. 例1:如图,在矩形ABCD中,两条对角线AC,BD相交于点O,∠AOB=60°,AB=4 ,求矩形对角线的长.例2:如图,在矩形ABCD中,E是BC上一点,AE=AD,DF⊥AE ,垂足为F.求证:DF=DC.例3:如图,将矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=4,求△BED的面积.提示:矩形的折叠问题常与勾股定理结合考查练一练1.如图,在矩形ABCD中,对角线AC,BD交于点O,下列说法错误的是(  )A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OB2.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD面积的_________.3.如图,在矩形ABCD中,AE⊥BD于E,∠DAE:∠BAE=3:1,求∠BAE和∠EAO的度数.直角三角形斜边上的中线的性质活动:如图,一张矩形纸片,画出两条对角线,沿着对角线AC剪去一半.问题:Rt△ABC中,BO是一条怎样的线段?它的长度与斜边AC有什么关系?猜想:证一证如图,在Rt△ABC中,∠ABC=90°, BO是AC上的中线.求证: BO = AC 几何语言描述:∵ Rt△ABC中,∠ABC=90°, OA=OC.∴BO = AC 例4 如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.(1)若AB=10,AC=8,求四边形AEDF的周长;(2)求证:EF垂直平分AD. 归纳:当已知条件含有线段的中点、直角三角形的条件时,可联想直角三角形斜边上的中线的性质进行求解例5:如图,已知BD,CE是△ABC不同边上的高,点G,F分别是BC,DE的中点,试说明GF⊥DE. 归纳:在直角三角形中,遇到斜边中点常作斜边中线,进而可将问题转化为等腰三角形的问题,然后利用等腰三角形“三线合一”的性质解题.练一练如图,在△ABC中,∠ABC = 90°,BD是斜边AC上的中线.(1)若BD=3cm,则AC =_____cm;(2)若∠C = 30° ,AB = 5cm,则AC =_____cm, BD =_____cm. 当堂练习 1.矩形具有而一般平行四边形不具有的性质是 ( ) A.对角线相等 B.对边相等 C.对角相等 D.对角线互相平分 2.若直角三角形的两条直角边分别5和12,则斜边上的中线长为 ( ) A.13 B.6 C.6.5 D.不能确定3.若矩形的一条对角线与一边的夹角为40°,则两条对角线相交的锐角是( ) A.20 ° B.40° C.80 ° D.10°4.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm, BC=8cm,则EF=______cm.5.如图,△ABC中,E在AC上,且 BE⊥AC.D为AB中点,若DE=5,AE=8, 则BE的长为______.6.如图,四边形ABCD是矩形,对角线AC,BD相交于点O,BE∥AC交DC的延长线于点E.(1)求证:BD=BE,(2)若∠DBC=30° , BO=4 ,求四边形ABED的面积.7.如图,在矩形ABCD中,AB=6,AD=8,P是AD上的动点,PE⊥AC,PF⊥BD于F,求PE+PF的值.
课后小结
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)