【同步培优-课时训练】19.3 课题学习 选择方案(pdf版,含答案)

文档属性

名称 【同步培优-课时训练】19.3 课题学习 选择方案(pdf版,含答案)
格式 zip
文件大小 777.9KB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2023-01-31 15:59:50

文档简介

→19.3课题学习
选择方案
5.某大剧院举行专场音乐会,成人票每张20元
知识要点全练
实燕

学生票每张5元,暑假期间,为了丰富广大师
知识点选择最佳方案
生的业余文化生活,影剧院制定了两种优惠
1.如图是甲、乙两家商店销售同一种产品的销售
方案:
价y(单位:元)与销售量x(单位:件)之间的函
方案1:购买一张成人票赠送一张学生票;
数图象,下列说法:①售2件时,甲、乙两家售
方案2:按总价的90%付款
价一样;②买1件时,买乙家的合算;③买3件
某校有4名老师与若干名(不少于4人)学生
时,买甲家的合算;④买乙家的1件售价约为
听音乐会.
3元.其中正确的说法是
(1)设学生人数为x(单位:人),付款总金额为
A.①②
B.②③④
y(单位:元),分别求出两种优惠方案中y
C.②③
D.①②③
与x的函数解析式;
t元
(2)请计算并确定出最节省费用的购票方案.
H
3000日
2000
100
123/
10002U003U0Wxkn1
(第1题图)
(第2題图)
2.某公司准备与汽车租赁公司签订租车合同,以
每月用车路程xkm计算,甲汽车租赁公司每月
收取的租赁费为以元,乙汽车租赁公司每月收
取的租赁费为元.若少,2与x之间的函数
关系如图所示(其中x=0对应的函数值为月固
定租赁费),则下列判断错误的是
()
6.(福建)某公司经营甲、乙两种特产,其中甲特
A.当月用车路程为2000km时,两家汽车租
产每吨成本价为10万元,销售价为10.5万
赁公司租赁费用相同
元:乙特产每吨成本价为1万元,销售价为
B.当月用车路程为2300km时,租甲汽车租
1.2万元.由于受有关条件限制,该公司每月
赁公司的车比较合算
这两种特产的销售量之和都是100t,且甲特
C.
除去月固定租赁费,甲租赁公司每千米收
产的销售量都不超过20t.
取的费用比乙租赁公司多
(1)若该公司某月销售甲、乙两种特产的总成
D.甲租赁公司每月的固定租赁费高于乙租赁
本为235万元,问这个月该公司分别销售
公司
甲、乙两种特产各多少吨?
3.甲、乙两个粮库分别存粮600t和1400t,A,B
(2)求该公司一个月销售这两种特产所能获得
两市分别用粮1200t和800t,需从甲、乙两粮
的最大总利润.
库调运,由甲库到A,B两市的运费分别为
6元/t和5元/t:由乙库到A,B两市的运费分
别是9元/t和6元/t,则总运费最少需

4,如图,是某电信公司

甲、乙两种业务每月
通话费用y(单位:元)
与通话时间x(单位:
10
min)之间的函数关
50
/min
系.某企业的周经理
想从两种业务中选择一种,如果周经理每个月
的通话时间都在100min以上,那么选
种业务合算
0752w3,OB=OD=AE=3.在Rt△AEC中,EC=√/AC+AE=
可能为2020cm.
第2课时函数
√(2W3y+3=√2I.13.解:(1)AB=CG-CE.证明:,四
1.D2.C3.C4.555.B6.D7.x-2且x≠0
边形ABCD是菱形,∴.AB=BC.又,∠BAC=60°,
·△ABC是等边三角形.,∠ABC=∠ACB=∠BAC=60°,
8.D9.C10.D1.112.号
13.x≥0且x≠4
AB=AC.:AD∥BC,AB∥DC,∴.∠DAC=∠ACB=
14.解:(1)x(2)4832(3)y=56一0.08x(4)当x
∠BAC=∠ACD=∠EAG=60°.∴.∠BAC+∠CAE=
∠EAG+∠CAE,即∠BAE=∠CAG.在△ABE和△ACG
350时,y=56-0.08×350=28,.汽车行驶350km时,
剩油28L.当y=8时,56-0.08x=8,∴x=600,.汽车剩
∠BAE=∠CAG,
油8L时,行驶了600km.
中,〈AB=AC,
,△ABE≌△ACG(ASA)..BE=
19.1.2函数的图象
∠ABC=∠ACD,
CG.,BC=CD,∴.CE=DG.AB=CD=CG-DG,∴.AB=
第1课时函数的图象
CG一CE.(2)AB=CE一CG.14.C15.(1)证明:
1.B2.C3.A4.D5.506.1.67.①②④
:在Rt△OAB中,D为OB的中点,.DO=DA.
8.解:(1)图略.(2)当x=4时y=8一6=2≠3,∴.点(4,
·∠DAO=∠DOA=30°,可求∠EOA=90°,∠AEO=
3)不在此函数的图象上,(3)把P(,4)的坐标代人y=
60°.又:'△OBC为等边三角形,∴.∠BO=∠AEO=60
2x一6中,得2m一6=4,.m=5.9.B10.C11.B
∴BC∥AE.∠BAO=∠COA=90°,.CO∥AB.六四边
12.313.(1)100(2)甲(3)814.8015.解:(1)3
形ABCE是平行四边形.(2)解:设OG=x,由折叠可得
一11(2)路.(3)当x=一3时,y=2(一3)一1=
AG=GC=8-x,在Rt△ABO中,∴∠OAB=90°,∠AOB=
一7≠5,点A不在此函数的图象上:当x=3时,y=2×
3一1=5,,,点B在此函数的图象上.(4),'点P(,9)
30°,BO=8,∴.AB=4.,.AO=43,在Rt△OAG中,OG+
在函数y=2x一1的图象上,,9=2m一1.∴,m=5.
OA2=AG,即x2+(4V5)2=(8-x)2,解得x=1,.OG=1.
16.解:(1)由图可知,小明离开家的最远距离是4km,他
本章自我测评
在120min内共跑了8km.(2)小明在这次慢跑过程中,
1.B2.D3.A4.B5.B6.D7.B8.B9.2
停留所用的时间为60一40=20(min).(3)小明在这次
8cm或83cm11.8512.713.1.514.元
慢跑的最快速度为4÷12090=8(km/).
60
15.证明:先证△ABE≌△CDF,∴.AE=CF.又易证AE∥
第2课时函数的三种表示方法
CF,,四边形AECF是平行四边形.16.(1)证明:先证
1.C2.B3.m=35+3n4.D5.A6.y=6+0.3x
△AEF≌△DBF,得AE=DB.又:AD是△ABC的中
7.C8.B9.A10.解:(1)1500m.(2)小明在12
线,∴DC=DB.∴AE LDC.∴.四边形ADCE是平行四边
14min骑车速度最快,速度为450m/min.(3)小明在书
形,(2)AB=AC(3)AB=AC且
店停留了4min.(4)小明共行驶了2700m,共用了
AB⊥AC17,(1)证明:由折叠的性质知
14min.11.D12.A13.y=-2x+1614.(1)40
OA=OC,EF⊥AC,再证△AOF≌△COE
(2)8(3)y=-5x十400≤x≤815.解:(1)y=2x一
得OF=OE,∴.四边形AECF是平行四
4000(x为正整数).(2)一3000一2000一10000
边形.又,EF⊥AC,∴.四边形AECF为
10002000(3)当月乘客量超过2000人次时,该路
菱形.(2)解:设AE=CE=x,则BE=8一x,在
公交车运营才能盈利.16.解:(1)BC=2×4=8(cm),
Rt△ABE中,,AB+BE=AE,.4+(8-x)2=x2,
CD=2×(6-4)=4(cm),DE=2×3=6(cm).S=AF·
x=5.故菱形的边长为5.(3)解:过点F作FG⊥BC
AB-CD·DE=(8十6)×6-4×6=60(cm2).(2)m=
于点G,易求出FG=4,EG=5一3=2,.EF=
S△c=方·AB·BC=
-×6×8=24(cm2).n=(BC+
√/E+FC=√/2+4=√20=2W5.18.(1)证明:先证出
CD+DE+EF+FA)÷2=(8+4+6+2+14)÷2=34÷2=
∠BAE=∠GEF,再证出△ABE≌△EGF,∴.FG=BE.
17.
(2)解:点F在∠DCG的平分线上,理由如下:连接CF
:△ABE≌△EGF,∴.BE=GF,AB=EG.又AB=BC,
19.2
一次函数
,EG=BC..EG一EC=BC-EC.,.CG=BE.,∴.CG=
19.2.1正比例函数
FG.△CFG是等腰直角三角形.∴∠FCG=45°..CF
1.C2.B3.A4.D5.解:(1)y=0.5x.(2)y=
平分∠DCG,即点F在∠DCG的平分线上,
80x.(3)y=4500x.6.B7.C8.B9.B10.C
11.减小12.>y13.解:(1)把(3,一6)代入y=kx
中,得3k=一6,.k=一2,y=一2x,(2)略.(3)当
x=4时,y=一2×4=一8≠一2,点A不在这个函数的
图象上.当x=-2时y=-2×(-号)=3点B在这
(第18题图)
(第19题图)
个函数的图象上.14.B15.A16.A17.D18.二、四
19.(1)证明:先证出∠BAE=∠CBF,再证出△ABE≌△BCF,
(2)解:延长BF交AD的延长线于点M,先证出△MDF≌
19.y=3x920.a△BCF,得BC=DM,又:BC=AD,∴.AD=DM.∴.GD
意,得a2一3=1且a一1≠0,.a=士2.又,(一2,b2十5)
是R△AGM斜边上的中线.“GD= AM,即GD=
在第二象限,a一1<0,,只取a=一2.,y=一3x,把
(-2,6+5)的坐标代人y=一3x中,得6+5=一3×(-2),
AD=4.Sam=3·GD·AH=2X4X9-
∴.b=士1.综上所述,a=一2,b=士1.23.解:(1)设y=
5
kx,把x=2,y=60代人上式,得2k=60,.k=30,.y=
第十九章
一次函数
30x.
(2)由(1)可知:当x=15时,y=30×15=450,
400十450=850<1000,因此不能将水箱注满.
19.1函数
24.解:(1)图略,PA=4,点P的纵坐标为y=士4.当
19.1.1变量与函数
第1课时变量
y=4时,3x=4,x=3:当y=一4时,3x=一4,x=
1.D2.y=0.56x0.56x和y3.y=10-2x10和
一3,.点P的坐标为(3,4)或(一3,一4).(2)点B的坐
2x和y4,解:(1)B=90°-a,其中90°是常量,a,3是变
标为(5,0),(5,0)或(6,0).
量.(2)s=y10t,其中y,10是常量,l,是变量.5,A
19.2.2一次函数
6.y=4一x24x和y7.S=24-3xx和S
第1课时一次函数的概念
8.解:(1)75180(2)y=40x-5(x-1)=35x+5,其中
1.C2.B3.C4.C5.C6.y=-2r+a
2
35和5是常量,x和y是变量.(3)当y=2020时,
35x十5=2020,x=403.:403不是正整数总长度不
7.(1)≠2,1为任意实数(2)m≠2且力=38.B9.A
71
10.y=15+0.2xx≥0且x为整数11.(1)y=12+
·147·