(共24张PPT)
8.4 三元一次方程组的解法
人教版七年级下册
1.理解三元一次方程组的概念.
2.能解简单的三元一次方程组.
学习目标
复习引入
1.解二元一次方程组有哪几种方法?
2.解二元一次方程组的基本思路是什么?
二元一次方程组
代入
加减
消元
一元一次方程
化二元为一元
化归转化思想
代入消元法和加减消元法
消元法
思考:若含有3个未知数的方程组如何求解?
问题引入
三个小动物年龄之和为26岁
流氓兔比加菲猫大1岁
流氓兔年龄的2倍加上米老鼠的年龄之和比加菲猫大18岁
求
三
个
小
动
物
的年
龄
三元一次方程(组)的概念
一
互动探究
问题1:题中有哪些未知量?你能找出哪些等量关系?
未知量:
流氓兔的年龄
加菲猫的年龄
米老鼠的年龄
每一个未知量都用一个字母表示
x岁
y岁
z岁
三个未知数(元)
等量关系:
(1)流氓兔的年龄+加菲猫的年龄+米老鼠的年龄=26
(2)流氓兔的年龄-1=加菲猫的年龄
(3)2×流氓兔的年龄+米老鼠的年龄=加菲猫的年龄+18
用方程表示等量关系.
x+y+z=26.
x-1=y.
2x+z=y+18.
问题2:观察列出的三个方程,你有什么发现?
x+y+z=26.
x-1=y.
2x+z=y+18.
二元一次方程
三元一次方程
含两个未知数
未知数的次数都是1
含三个未知数
未知数的次数都是1
因三个小动物的年龄必须同时满足上述三个方程,故将三个方程联立在一起.
x+y+z=26.
x-1=y.
2x+z=y+18.
在这个方程组中,含有三个未知数,每个方程中所含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.
练一练:下列方程组不是三元一次方程组的是 ( )
A.
B.
C.
D.
D
[注意] 组成三元一次方程组的三个一次方程中,不一定要求每一个一次方程都含有三个未知数.
三元一次方程组的解
二
类似二元一次方程组的解,三元一次方程组中各个方程的公共解,叫做这个三元一次方程组的解.
怎样解三元一次方程组呢?
能不能像以前一样“消元”,把“三元”化成“二元”呢?
典例精析
例1:解方程组
解:由方程②得 x=y+1 ④
把④分别代入①③得
2y+z=22 ⑤
3y-z=18 ⑥
解由⑤⑥组成的二元一次方程组,得
y=8,z=6
把y=8代入④,得x=9
所以原方程的解是
x=9
y=8
z=6
类似二元一次方程组的“消元”,把“三元”化成“二元”.
总结归纳
解三元一次方程组的基本思路是:通过“代入”或“加减”进行 ,把 转化为 ,使解三元一次方程组转化为解 ,进而再转化为解 .
三元一次方程组
二元一次方程组
一元一次方程
消元
消元
消元
“三元”
“二元”
二元一次方程组
一元一次方程
例2:在等式 y=ax2+bx+c中,当x=-1时,y=0;当x=2时,y=3;当x=5时,y=60. 求a,b,c的值.
解:根据题意,得三元一次方程组
a-b+c= 0, ①
4a+2b+c=3, ②
25a+5b+c=60. ③
②-①, 得 a+b=1 ④
③-①,得 4a+b=10 ⑤
④与⑤组成二元一次方程组
a+b=1,
4a+b=10.
a+b=1,
4a+b=10.
a=3,
b=-2.
解这个方程组,得
把 代入①,得
a=3,
b=-2
c=-5,
a=3,
b=-2,
c=-5.
因此
三元一次方程组的应用
三
例3 幼儿营养标准中要求每一个幼儿每天所需的营养量中应包含35单位的铁、70单位的钙和35单位的维生素.现有一批营养师根据上面的标准给幼儿园小朋友们配餐,其中包含A、B、C三种食物,下表给出的是每份(50g)食物A、B、C分别所含的铁、钙和维生素的量(单位)
食物 铁 钙 维生素
A 5 20 5
B 5 10 15
C 10 10 5
(1)如果设食谱中A、B、C三种食物各为x、y、z份,请列出方程组,使得A、B、C三种食物中所含的营养量刚好满足幼儿营养标准中的要求.
(2)解该三元一次方程组,求出满足要求的A、B、C的份数.
解:(1)由该食谱中包含35单位的铁、70单位的钙和35单位的维生素,得方程组
(2) - ×4, - ,得
⑤
④
⑤+④,得
⑥
④
通过回代,得 z=2,y=1,x=2.
答:该食谱中包含A种食物2份,B种食物1份,C种食物2份.
当堂练习
1.解方程组 ,则x=_____,
y=______,z=_______.
x+y-z=11,
y+z-x=5,
z+x-y=1.
①
②
③
【解析】通过观察未知数的系数,可采取① +②求出y, ②+ ③求出z,最后再将y与z的值代入任何一个方程求出x即可.
6
8
3
2.若x+2y+3z=10,4x+3y+2z=15,则x+y+z的值为( )
A.2 B.3 C.4 D.5
解析: 通过观察未知数的系数,可采取两个方程相加得,5x+5y+5z=25,所以x+y+z=5.
D
3.若|a-b-1|+(b-2a+c)2+|2c-b|=0,求a,b,
c的值.
解:因为三个非负数的和等于0,所以每个非负数都为0.
可得方程组
解得
4.一个三位数,十位上的数字是个位上的数字的 ,百位上的数字与十位上的数字之和比个位上的数字大1.将百位与个位上的数字对调后得到的新三位数比原三位数大495,求原三位数.
解:设原三位数百位、十位、个位上的数字分别为x、y、z.由题意,得
解得
答:原三位数是368.
三元一次方程组
三元一次方程组的概念
课堂小结
三元一次方程组的解法
三元一次方程组的应用
谢谢
21世纪教育网(www.21cnjy.com)
中小学教育资源网站
兼职招聘:
https://www.21cnjy.com/recruitment/home/admin中小学教育资源及组卷应用平台
2022—2023学年度下学期七年级数学教学案 第6 周 第4节
课题 8.4三元一次方程组解法
教学目标 知识与技能:了解三元一次方程组的概念及其解法。过程与方法:能解简单的三元一次方程组。情感态度与价值观:在解的过程中进一步体会“消元”思想.
重点 会用消元法解三元一次方程组
难点 化三元为二元
教具 多媒体、教学案
教与学的过程教与学的过程教与学的过程 教 与 学 的 内 容
复习引入1.解二元一次方程组有哪几种方法? 2.解二元一次方程组的基本思路是什么? 思考:若含有3个未知数的方程组如何求解?三元一次方程(组)的概念问题引入三个小动物年龄之和为26岁,流氓兔比加菲猫大1岁,流氓兔年龄的2倍加上米老鼠的年龄之和比加菲猫大18岁,求三个小动物的年龄。问题1:题中有哪些未知量?你能找出哪些等量关系?问题2:观察列出的三个方程,你有什么发现?在这个方程组中,含有三个未知数,每个方程中所含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.练一练:下列方程组不是三元一次方程组的是 ( )A. B. C. D. [注意] 组成三元一次方程组的三个一次方程中,不一定要求每一个一次方程都含有三个未知数.三元一次方程组的解类似二元一次方程组的解,三元一次方程组中各个方程的公共解,叫做这个三元一次方程组的解.典例精析: 例1:解方程组 总结归纳: 解三元一次方程组的基本思路是:通过“代入”或“加减”进行 ,把 转化为 ,使解三元一次方程组转化为解 ,进而再转化为解 .例2:在等式 y=ax2+bx+c中,当x=-1时,y=0;当x=2时,y=3;当x=5时,y=60. 求a,b,c的值.三元一次方程组的应用例3 幼儿营养标准中要求每一个幼儿每天所需的营养量中应包含35单位的铁、70单位的钙和35单位的维生素.现有一批营养师根据上面的标准给幼儿园小朋友们配餐,其中包含A、B、C三种食物,下表给出的是每份(50g)食物A、B、C分别所含的铁、钙和维生素的量(单位). (1)如果设食谱中A、B、C三种食物各为x、y、z份,请列出方程组,使得A、B、C三种食物中所含的营养量刚好满足幼儿营养标准中的要求.(2)解该三元一次方程组,求出满足要求的A、B、C的份数.当堂练习1.解方程组 ,则x=_____,y=______,z=_______.2.若x+2y+3z=10,4x+3y+2z=15,则x+y+z的值为( )A.2 B.3 C.4 D.53.若|a-b-1|+(b-2a+c)2+|2c-b|=0,求a,b,c的值.4.一个三位数,十位上的数字是个位上的数字的 ,百位上的数字与十位上的数字之和比个位上的数字大1.将百位与个位上的数字对调后得到的新三位数比原三位数大495,求原三位数.
课后反思
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)