模块综合测评
1.用遥控器调换电视频道的过程,实际上就是传感器把光信号转化成电信号的过程,下列属于这类传感器的是( )
A.红外报警装置
B.走廊照明灯的声控装置
C.自动洗衣机中的压力传感装置
D.电饭煲中控制加热和保温的温控器
2.如图(a)所示,有一个面积为100 cm2的金属圆环,电阻为0.1 Ω,圆环中磁感应强度的变化规律如图(b)所示,且磁场方向与圆环所在平面相垂直,在A→B过程中,圆环中感应电流I方向和流过它的电荷量q为( )
(a) (b)
A.逆时针,q=0.01 C B.逆时针,q=0.02 C
C.顺时针,q=0.02 C D.逆时针,q=0.03 C
3.三角形导线框abc固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直纸面向里,磁感应强度B随时间t变化的规律如图所示。规定线框中感应电流i沿顺时针方向为正方向,下列i t图像中正确的是( )
A B
C D
4.如图所示,L为电阻很小的线圈,G1和G2为内阻可不计、零点在表盘中央的电流计。当开关S处于闭合状态时,两表的指针皆偏向右方。那么,当开关S断开时,将出现( )
A.G1和G2的指针都立即回到零点
B.G1的指针立即回到零点,而G2的指针缓慢地回到零点
C.G1的指针缓慢地回到零点,而G2的指针先立即偏向左方,然后缓慢地回到零点
D.G1的指针先立即偏向左方,然后缓慢地回到零点,而G2的指针缓慢地回到零点
5.(创新题)电磁炮是一种利用电磁作用发射炮弹的先进武器,我国正在进行舰载电磁轨道炮试验,射程可达200 km,预计到2025年投入使用。某同学利用饼型强磁铁和导轨模拟电磁炮的发射原理,如图所示,相同的饼型强磁铁水平等间距放置,使导轨平面近似为匀强磁场。下列说法不正确的是( )
A.放置强磁铁时,应保证磁铁的磁极同向
B.强磁铁磁性越强,导轨平面越接近匀强磁场
C.强磁铁间距越小,导轨平面越接近匀强磁场
D.若全部磁铁N极向上,导体棒所受安培力水平向右
6.图甲为理想变压器,其原、副线圈的匝数比为4∶1,原线圈接图乙所示的正弦交流电。图甲中Rt为阻值随温度升高而减小的热敏电阻,R1为定值电阻,电压表和电流表均为理想电表。则下列说法正确的是( )
甲 乙
A.图乙所示电压的瞬时值表达式为u=
51sin 50πt (V)
B.变压器原、副线圈中的电流之比为1∶4
C.变压器输入、输出功率之比为1∶4
D.Rt处温度升高时,电压表和电流表的示数均变大
7.(2022·济南检测)如图甲所示,线圈ab中通有如图乙所示的电流,电流从a到b为正方向,那么在0~t0这段时间内,用丝线悬挂的铝环M中产生感应电流,则( )
甲 乙
A.从左向右看感应电流先逆时针后顺时针
B.感应电流的大小先减小后增加
C.铝环受到的安培力先向左后向右
D.铝环始终有扩大的趋势
8.(2020·全国卷Ⅲ)真空中有一匀强磁场,磁场边界为两个半径分别为a和3a的同轴圆柱面,磁场的方向与圆柱轴线平行,其横截面如图所示。一速率为v的电子从圆心沿半径方向进入磁场。已知电子质量为m,电荷量为e,忽略重力。为使该电子的运动被限制在图中实线圆围成的区域内,磁场的磁感应强度最小为( )
A. B.
C. D.
9.如图为“研究电磁感应现象”实验中所用器材的示意图。试回答下列问题。
(1)在该实验中电流计G的作用是检测感应电流的________和________。
(2)请按实验要求在实物上连线。
(3)在实验出现的电磁感应现象中,A、B线圈哪个相当于电源?________(选填“A”或“B”)。
10.如图所示,水平桌面上有两个质量为m=5.0×10-3 kg、边长均为l=0.2 m的正方形线框A和B,电阻均为R=0.5 Ω,用绝缘细线相连静止于宽为d=0.8 m的匀强磁场的两边,磁感应强度B=1.0 T,垂直桌面向下,现用水平恒力F=0.8 N拉线框B,不计摩擦,线框A的右边离开磁场时恰好做匀速运动,求:
(1)线框匀速运动的速度;
(2)线框产生的焦耳热。
11.(多选)如图所示,闭合金属线框从一定高度自由下落进入匀强磁场中,磁场足够大,从ab边开始进入磁场到cd边刚进入磁场的这段时间内,线框运动的v t图像可能是( )
A B C D
12.(多选)(2021·辽宁卷)如图(a)所示,两根间距为L、足够长的光滑平行金属导轨竖直放置并固定,顶端接有阻值为R的电阻,垂直导轨平面存在变化规律如图(b)所示的匀强磁场,t=0时磁场方向垂直纸面向里。在t=0到t=2t0的时间内,金属棒水平固定在距导轨顶端L处;t=2t0时,释放金属棒。整个过程中金属棒与导轨接触良好,导轨与金属棒的电阻不计,则( )
图(a) 图(b)
A.在t=时,金属棒受到安培力的大小为
B.在t=t0时,金属棒中电流的大小为
C.在t=时,金属棒受到安培力的方向竖直向上
D.在t=3t0时,金属棒中电流的方向向右
13.(多选)如图混合正离子束先后通过正交电场磁场区域Ⅰ和匀强磁场区域Ⅱ,如果这束正离子束在区域Ⅰ中不偏转,进入区域Ⅱ后偏转半径又相同,则说明这些正离子具有相同的( )
A.速度 B.质量
C.电荷 D.比荷
14.(多选)(2021·河北卷)如图所示,发电机的矩形线圈长为2L、宽为L,匝数为N,放置在磁感应强度大小为B的匀强磁场中。理想变压器的原、副线圈匝数分别为n0、n1和n2,两个副线圈分别接有电阻R1和R2,当发电机线圈以角速度ω匀速转动时,理想电流表读数为I。不计线圈电阻。下列说法正确的是( )
A.通过电阻R2的电流为
B.电阻R2两端的电压为
C.n0与n1的比值为
D.发电机的功率为
15.(2020·全国卷Ⅲ)已知一热敏电阻当温度从10 ℃升至60 ℃时阻值从几千欧姆降至几百欧姆,某同学利用伏安法测量其阻值随温度的变化关系。所用器材:电源E、开关S、滑动变阻器R(最大阻值为20 Ω)、电压表(可视为理想电表)和毫安表(内阻约为100 Ω)。
(1)在方框中所给的器材符号之间画出连线,组成测量电路图。
(2)实验时,将热敏电阻置于温度控制室中,记录不同温度下电压表和毫安表的示数,计算出相应的热敏电阻阻值。若某次测量中电压表和毫安表的示数分别为5.5 V和3.0 mA,则此时热敏电阻的阻值为________ kΩ。(保留两位有效数字)实验中得到的该热敏电阻阻值R随温度t变化的曲线如图甲所示。
(3)将热敏电阻从温控室取出置于室温下,测得达到热平衡后热敏电阻的阻值为2.2 kΩ。由图甲求得,此时室温为________ ℃(保留三位有效数字)。
(4)利用实验中的热敏电阻可以制作温控报警器,其电路的一部分如图乙所示。图中,E为直流电源(电动势为10 V,内阻可忽略);当图中的输出电压达到或超过6.0 V时,便触发报警器(图中未画出)报警,若要求开始报警时环境温度为50 ℃,则图中________(选填“R1”或“R2”)应使用热敏电阻,另一固定电阻的阻值应为________ kΩ(保留两位有效数字)。
甲 乙
16.质谱仪原理如图所示,a为粒子加速器,电压为U1;b为速度选择器,磁场与电场正交,磁感应强度为B1,板间距离为d;c为偏转分离器,磁感应强度为B2。今有一质量为m、电荷量为e的正粒子(不计重力),经加速后,该粒子恰能通过速度选择器。粒子进入分离器后做半径为R的匀速圆周运动:
(1)粒子的速度v为多少?
(2)速度选择器的电压U2为多少?
(3)粒子在B2磁场中做匀速圆周运动的半径R为多大?
17.如图所示,在磁感应强度B=1.0 T、方向竖直向下的匀强磁场中,有一个与水平面成θ=37°角的导电滑轨,滑轨上放置一个可自由移动的金属杆ab,已知接在滑轨中的电源电动势E=12 V,内阻不计,ab杆长l=0.5 m,质量m=0.2 kg,杆与滑轨间的动摩擦因数μ=0.1,滑轨与ab杆的电阻忽略不计,g取10 m/s2,sin 37°=0.6。接在滑轨上的滑动变阻器R的阻值在什么范围内变化时,可使ab杆在滑轨上保持静止?(结果保留一位有效数字)
18.交流发电机转子有N匝线圈,每匝线圈所围面积为S,匀强磁场的磁感应强度为B,匀速转动的角速度为ω,线圈电阻为r,外电路电阻为R,当线圈处于中性面时开始计时,逆时针匀速转动180°过程中,求:
(1)写出R两端的电压瞬时值的表达式;
(2)R上产生的电热Q;
(3)通过R的电荷量q。
11/13模块综合测评
1.用遥控器调换电视频道的过程,实际上就是传感器把光信号转化成电信号的过程,下列属于这类传感器的是( )
A.红外报警装置
B.走廊照明灯的声控装置
C.自动洗衣机中的压力传感装置
D.电饭煲中控制加热和保温的温控器
A [红外报警装置是传感器把光信号(红外线)转化成电信号;走廊照明灯的声控装置是传感器把声音信号转化成电信号;自动洗衣机中的压力传感装置是把位移信号转化成电信号;电饭煲中控制加热和保温的温控器是把温度信号转化成电信号。]
2.如图(a)所示,有一个面积为100 cm2的金属圆环,电阻为0.1 Ω,圆环中磁感应强度的变化规律如图(b)所示,且磁场方向与圆环所在平面相垂直,在A→B过程中,圆环中感应电流I方向和流过它的电荷量q为( )
(a) (b)
A.逆时针,q=0.01 C B.逆时针,q=0.02 C
C.顺时针,q=0.02 C D.逆时针,q=0.03 C
A [由楞次定律可知,感应电流为逆时针方向;再由题图(b)可知ΔB=(0.2-0.1)T=0.1 T,所以q=IΔt===0.01 C。]
3.三角形导线框abc固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直纸面向里,磁感应强度B随时间t变化的规律如图所示。规定线框中感应电流i沿顺时针方向为正方向,下列i t图像中正确的是( )
A B
C D
B [磁通量均匀变化,所以产生恒定的感应电流,因为第1 s内向里的磁通量增加,由楞次定律可判断感应电流方向为逆时针方向,即规定的负方向,1~3 s时间内感应电流方向为顺时针方向,即规定的正方向,选项B正确。]
4.如图所示,L为电阻很小的线圈,G1和G2为内阻可不计、零点在表盘中央的电流计。当开关S处于闭合状态时,两表的指针皆偏向右方。那么,当开关S断开时,将出现( )
A.G1和G2的指针都立即回到零点
B.G1的指针立即回到零点,而G2的指针缓慢地回到零点
C.G1的指针缓慢地回到零点,而G2的指针先立即偏向左方,然后缓慢地回到零点
D.G1的指针先立即偏向左方,然后缓慢地回到零点,而G2的指针缓慢地回到零点
D [S断开后,自感电流的方向与G1原电流方向相反,与G2原电流方向相同。故选D。]
5.(创新题)电磁炮是一种利用电磁作用发射炮弹的先进武器,我国正在进行舰载电磁轨道炮试验,射程可达200 km,预计到2025年投入使用。某同学利用饼型强磁铁和导轨模拟电磁炮的发射原理,如图所示,相同的饼型强磁铁水平等间距放置,使导轨平面近似为匀强磁场。下列说法不正确的是( )
A.放置强磁铁时,应保证磁铁的磁极同向
B.强磁铁磁性越强,导轨平面越接近匀强磁场
C.强磁铁间距越小,导轨平面越接近匀强磁场
D.若全部磁铁N极向上,导体棒所受安培力水平向右
B [放置强磁铁时,应保证磁铁的磁极同向,并且强磁铁间距越小,导轨平面越接近匀强磁场,磁性的强弱与匀强磁场无关,A、C正确,不符合题意,B错误,符合题意;若全部磁铁N极向上,根据左手定则,导体棒所受安培力水平向右,D正确,不符合题意。故选B。]
6.图甲为理想变压器,其原、副线圈的匝数比为4∶1,原线圈接图乙所示的正弦交流电。图甲中Rt为阻值随温度升高而减小的热敏电阻,R1为定值电阻,电压表和电流表均为理想电表。则下列说法正确的是( )
甲 乙
A.图乙所示电压的瞬时值表达式为u=
51sin 50πt (V)
B.变压器原、副线圈中的电流之比为1∶4
C.变压器输入、输出功率之比为1∶4
D.Rt处温度升高时,电压表和电流表的示数均变大
B [题图乙所示电压的瞬时值表达式为u=51sin 100πt(V),A错误;根据=可知,原、副线圈中的电流之比与匝数成反比,理想变压器的输入、输出功率相等,B正确,C错误;Rt处温度升高时,Rt的阻值减小,电压表示数不变,电流表示数变大,D选项错误。]
7.(2022·济南检测)如图甲所示,线圈ab中通有如图乙所示的电流,电流从a到b为正方向,那么在0~t0这段时间内,用丝线悬挂的铝环M中产生感应电流,则( )
甲 乙
A.从左向右看感应电流先逆时针后顺时针
B.感应电流的大小先减小后增加
C.铝环受到的安培力先向左后向右
D.铝环始终有扩大的趋势
C [根据题意可知,由于电流从a到b为正方向,当电流是从a流向b,由右手螺旋定则可知,线圈B的磁场水平向右,由于电流的减小,所以磁通量变小,根据楞次定律可得,铝环M的感应电流顺时针(从左向右看),当电流增大时,磁通量变大,根据楞次定律可得,铝环M的感应电流逆时针(从左向右看),A错误;由图乙可知,ab内的电流的变化率不变,则产生的磁场的变化率不变,根据法拉第电磁感应定律可知,产生的电动势的大小不变,所以感应电流的大小也不变,B错误;穿过线圈M的磁通量先减小后增大,根据楞次定律,阻碍磁通量的变化,则铝环受到的安培力先向左后向右,线圈有先扩大后收缩的趋势,C正确,D错误。故选C。]
8.(2020·全国卷Ⅲ)真空中有一匀强磁场,磁场边界为两个半径分别为a和3a的同轴圆柱面,磁场的方向与圆柱轴线平行,其横截面如图所示。一速率为v的电子从圆心沿半径方向进入磁场。已知电子质量为m,电荷量为e,忽略重力。为使该电子的运动被限制在图中实线圆围成的区域内,磁场的磁感应强度最小为( )
A. B.
C. D.
C [为使电子的运动被限制在图中实线圆围成的区域内,电子进入匀强磁场中做匀速圆周运动的半径最大时轨迹如图所示,设其轨迹半径为r,轨迹圆圆心为M,磁场的磁感应强度最小为B,由几何关系有+r=3a,解得r=a,电子在匀强磁场中做匀速圆周运动有evB=m,解得B=,选项C正确。]
9.如图为“研究电磁感应现象”实验中所用器材的示意图。试回答下列问题。
(1)在该实验中电流计G的作用是检测感应电流的________和________。
(2)请按实验要求在实物上连线。
(3)在实验出现的电磁感应现象中,A、B线圈哪个相当于电源?________(选填“A”或“B”)。
[解析] (1)电流计G的零刻度在表盘中央,电流流过时,指针偏转,既显示了电流的大小,也显示了电流的方向。
(2)电源、开关、滑动变阻器和小线圈构成一闭合回路;大线圈和电流计构成闭合电路。电路如图所示:
(3)B线圈与电流计相连,显示回路感应电流,即B线圈相当于电源。
[答案] (1)大小 方向 (2)见解析图 (3)B
10.如图所示,水平桌面上有两个质量为m=5.0×10-3 kg、边长均为l=0.2 m的正方形线框A和B,电阻均为R=0.5 Ω,用绝缘细线相连静止于宽为d=0.8 m的匀强磁场的两边,磁感应强度B=1.0 T,垂直桌面向下,现用水平恒力F=0.8 N拉线框B,不计摩擦,线框A的右边离开磁场时恰好做匀速运动,求:
(1)线框匀速运动的速度;
(2)线框产生的焦耳热。
[解析] (1)线框A的右边离开磁场时
E=Blv,I=
平衡条件为F=BIl,所以v==10 m/s。
(2)由能量守恒定律Q=F(d+l)-·2mv2
代入数据解得线框进出磁场过程中产生的焦耳热Q=0.3 J。
[答案] (1)10 m/s (2)0.3 J
11.(多选)如图所示,闭合金属线框从一定高度自由下落进入匀强磁场中,磁场足够大,从ab边开始进入磁场到cd边刚进入磁场的这段时间内,线框运动的v t图像可能是( )
A B C D
ACD [当ab边刚进入磁场时,若线框所受安培力等于重力,则线框在从ab边开始进入磁场到cd边刚进入磁场前做匀速运动,故A是可能的;当ab边刚进入磁场时,若线框所受安培力小于重力,则线框做加速度逐渐减小的加速运动,最后可能做匀速运动,故C情况也可能;当ab边刚进入磁场时,若线框所受安培力大于重力,则线框做加速度逐渐减小的减速运动,最后可能做匀速运动,故D可能;线框在磁场中不可能做匀变速运动,故B项是不可能的。]
12.(多选)(2021·辽宁卷)如图(a)所示,两根间距为L、足够长的光滑平行金属导轨竖直放置并固定,顶端接有阻值为R的电阻,垂直导轨平面存在变化规律如图(b)所示的匀强磁场,t=0时磁场方向垂直纸面向里。在t=0到t=2t0的时间内,金属棒水平固定在距导轨顶端L处;t=2t0时,释放金属棒。整个过程中金属棒与导轨接触良好,导轨与金属棒的电阻不计,则( )
图(a) 图(b)
A.在t=时,金属棒受到安培力的大小为
B.在t=t0时,金属棒中电流的大小为
C.在t=时,金属棒受到安培力的方向竖直向上
D.在t=3t0时,金属棒中电流的方向向右
BC [由图可知在0~t0时间段内产生的感应电动势为E==,根据闭合电路欧姆定律有此时间段的电流为I==,在时磁感应强度为,此时安培力为F=BIL=,故A错误,B正确;由图可知在t=时,磁场方向垂直纸面向外并逐渐增大,根据楞次定律可知产生顺时针方向的电流,再由左手定则可知金属棒受到的安培力方向竖直向上,故C正确;由图可知在t=3t0时,磁场方向垂直纸面向外,金属棒向下掉的过程中磁通量增加,根据楞次定律可知金属棒中的感应电流方向向左,故D错误。故选BC。]
13.(多选)如图混合正离子束先后通过正交电场磁场区域Ⅰ和匀强磁场区域Ⅱ,如果这束正离子束在区域Ⅰ中不偏转,进入区域Ⅱ后偏转半径又相同,则说明这些正离子具有相同的( )
A.速度 B.质量
C.电荷 D.比荷
AD [在正交的电磁场区域中,正离子不偏转,说明离子受力平衡,在区域Ⅰ中,离子受电场力和洛伦兹力,由qvB=qE,得v=,可知这些正离子具有相同的速度;进入只有匀强磁场的区域Ⅱ时,偏转半径相同,由R=和v=,可知,R=;这些正离子具有相同的比荷。故选AD。]
14.(多选)(2021·河北卷)如图所示,发电机的矩形线圈长为2L、宽为L,匝数为N,放置在磁感应强度大小为B的匀强磁场中。理想变压器的原、副线圈匝数分别为n0、n1和n2,两个副线圈分别接有电阻R1和R2,当发电机线圈以角速度ω匀速转动时,理想电流表读数为I。不计线圈电阻。下列说法正确的是( )
A.通过电阻R2的电流为
B.电阻R2两端的电压为
C.n0与n1的比值为
D.发电机的功率为
BC [电阻R1两端的电压U1=IR1,由变压器电压规律有=,解得U2=,则通过电阻R2的电流I2==I,A错误,B正确;由题意可知发电机电动势的最大值Em=NBSω=2NBL2ω,电动势的有效值E==NBL2ω,由变压器的电压规律有=,所以==,C正确;变压器的输入功率等于输出功率,所以发电机的功率P=P1+P2=I2R1+IR2=U1I+U2I2=NBL2ωI,D错误。]
15.(2020·全国卷Ⅲ)已知一热敏电阻当温度从10 ℃升至60 ℃时阻值从几千欧姆降至几百欧姆,某同学利用伏安法测量其阻值随温度的变化关系。所用器材:电源E、开关S、滑动变阻器R(最大阻值为20 Ω)、电压表(可视为理想电表)和毫安表(内阻约为100 Ω)。
(1)在方框中所给的器材符号之间画出连线,组成测量电路图。
(2)实验时,将热敏电阻置于温度控制室中,记录不同温度下电压表和毫安表的示数,计算出相应的热敏电阻阻值。若某次测量中电压表和毫安表的示数分别为5.5 V和3.0 mA,则此时热敏电阻的阻值为________ kΩ。(保留两位有效数字)实验中得到的该热敏电阻阻值R随温度t变化的曲线如图甲所示。
(3)将热敏电阻从温控室取出置于室温下,测得达到热平衡后热敏电阻的阻值为2.2 kΩ。由图甲求得,此时室温为________ ℃(保留三位有效数字)。
(4)利用实验中的热敏电阻可以制作温控报警器,其电路的一部分如图乙所示。图中,E为直流电源(电动势为10 V,内阻可忽略);当图中的输出电压达到或超过6.0 V时,便触发报警器(图中未画出)报警,若要求开始报警时环境温度为50 ℃,则图中________(选填“R1”或“R2”)应使用热敏电阻,另一固定电阻的阻值应为________ kΩ(保留两位有效数字)。
甲 乙
[解析] (1)由于滑动变阻器的最大阻值比待测电阻的阻值小得多,因此滑动变阻器应用分压式接法,由于电压表可视为理想电表,则电流表应用外接法,电路图如答案图所示。(2)由欧姆定律得R== Ω≈1.8×103 Ω=1.8 kΩ。(3)由题图(a)可直接读出热敏电阻的阻值为2.2 kΩ时,室温为25.5 ℃。(4)由题意可知随温度的升高R2两端的输出电压应增大,又由串联电路的特点可知,R1的阻值应减小或R2的阻值应增大,而热敏电阻的阻值随温度的升高而减小,因此R1应为热敏电阻;当环境温度为50 ℃时,热敏电阻的阻值为0.8 kΩ,则由串联电路的特点有=,解得R2=1.2 kΩ。
[答案] (1)如图所示 (2)1.8 (3)25.5 (4)R1 1.2
16.质谱仪原理如图所示,a为粒子加速器,电压为U1;b为速度选择器,磁场与电场正交,磁感应强度为B1,板间距离为d;c为偏转分离器,磁感应强度为B2。今有一质量为m、电荷量为e的正粒子(不计重力),经加速后,该粒子恰能通过速度选择器。粒子进入分离器后做半径为R的匀速圆周运动:
(1)粒子的速度v为多少?
(2)速度选择器的电压U2为多少?
(3)粒子在B2磁场中做匀速圆周运动的半径R为多大?
[解析] (1)在a中,e被加速电场U1加速,由动能定理有eU1=mv2
得v=。
(2)在b中,e受的电场力和洛伦兹力大小相等,即e=evB1
代入v值得U2=B1d。
(3)在c中,e受洛伦兹力作用而做匀速圆周运动,做匀速圆周运动的半径R=
代入v值得R= 。
[答案] (1) (2)B1d (3)
17.如图所示,在磁感应强度B=1.0 T、方向竖直向下的匀强磁场中,有一个与水平面成θ=37°角的导电滑轨,滑轨上放置一个可自由移动的金属杆ab,已知接在滑轨中的电源电动势E=12 V,内阻不计,ab杆长l=0.5 m,质量m=0.2 kg,杆与滑轨间的动摩擦因数μ=0.1,滑轨与ab杆的电阻忽略不计,g取10 m/s2,sin 37°=0.6。接在滑轨上的滑动变阻器R的阻值在什么范围内变化时,可使ab杆在滑轨上保持静止?(结果保留一位有效数字)
[解析] 对金属杆受力分析,回路中的电流为:I=
金属杆受到的安培力为:F=BIl
当摩擦力沿斜面向上,电流强度最小,电阻最大,由共点力平衡得:mgsin 37°-f-Fcos 37°=0
mgcos 37°+Fsin 37°-FN=0
f=μFN
联立解得:Rmax=5 Ω
当摩擦力沿斜面向下,电流强度最大,电阻最小,由共点力平衡得:
mgsin 37°+f-Fcos 37°=0
mgcos 37°+Fsin 37°-FN=0
f=μFN
联立解得:Rmin=3 Ω
故可变电阻在3~5 Ω范围内。
[答案] 3~5 Ω
18.交流发电机转子有N匝线圈,每匝线圈所围面积为S,匀强磁场的磁感应强度为B,匀速转动的角速度为ω,线圈电阻为r,外电路电阻为R,当线圈处于中性面时开始计时,逆时针匀速转动180°过程中,求:
(1)写出R两端的电压瞬时值的表达式;
(2)R上产生的电热Q;
(3)通过R的电荷量q。
[解析] 按照电流的定义I=,计算电荷量q应该用电流的平均值,不能用有效值、最大值或瞬时值。电热应该用有效值,先求总电热Q,再按照内外电阻之比求R上产生的电热QR。这里的电流必须要用有效值,不能用平均值、最大值或瞬时值。
(1)线圈由中性面开始转动,感应电动势的瞬时值表达式为e=nBSωsin ωt
由闭合电路欧姆定律可知i=
电阻R两端的电压为:u=iR
解以上三式得:u=nBSωsin ωt。
(2)感应电动势的最大值为Em=nBSω
感应电动势的有效值为E=
由闭合电路欧姆定律可知I=
由焦耳定律可知,Q=I2Rt,其中t=
解以上四式得:Q=。
(3)通过电阻R的电荷量为q=Δt
由闭合电路欧姆定律得:=
由法拉第电磁感应定律得:=n
ΔΦ=BS-(-BS)=2BS
联立以上四式得:q=。
[答案] (1)u=nBSωsin ωt (2)Q= (3)q=
11/13